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Abstract

In this thesis we show how skein algebras and skein categories can be computed by the mech-
anism of factorisation homology. We recover Kauffman bracket skein algebras of the four–
punctured sphere and punctured torus from the presentable factorisation homology of the
quantum group Uq(sl2). Generalising this result, we then show that any skein category is a
k–linear factorisation homology.

In the first part of this thesis, we study in detail the presentable factorisation homology of
the four–punctured sphere and punctured torus with coefficients in the integrable representa-
tions of the quantum group Uq(sl2). These factorisation homologies are categories of Uq(()sl2)–
equivariant modules for algebras determined by the surface, and their Uq(sl2)–invariant subal-
gebra gives a quantisation of the SL2–character variety of the surface. We obtain presentations
and Poincaré–Birkhoff–Witt bases for the algebra of invariants for both our example surfaces.
As an application, we explicitly identify these algebras of invariants with two other quantisa-
tions of the SL2–character variety for these surfaces: Teschner and Vartanov’s quantisation of
the moduli space of flat connections and the Kauffman bracket skein algebra.

In the second part of this thesis, we pursue the relation between factorisation homology
and skein theory further. We prove that skein categories satisfy excision and that they are
k–linear factorisation homologies with coefficients given by the colouring of the skein category.
As a corollary we show the free cocompletion of the skein category of the ribbon category of
finite–dimensional representations of the quantum group Uq(g) is the presentable factorisation
homology with coefficients in the integrable representations of the quantum group Uq(g). Hence,
the free cocompletion of the Kauffman bracket skein category is the factorisation homology
which we considered in the first part of the thesis.
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Chapter 1

Introduction

1.1 Factorisation Homology

Factorisation homology is a framework for constructing manifold–invariants by associating to
a disc a system of local coordinates in an ∞-category and ‘integrating’ this object over the
manifold. This association is achieved by the choice of an En–algebra. An En–algebra is an
algebra over the little disc operad En in a symmetric monoidal∞–category C⊗, or equivalently
it is a symmetric monoidal functor

F : Disctn → C⊗ : F (Dn) = A ∈ C⊗

from the ∞–category Discn of discs, embeddings and isotopies to C⊗. The factorisation ho-
mology of the n–manifold M with coefficients in A is then an object

∫
M
A ∈ C⊗ which is

invariant up to homeomorphism of M .
Factorisation homology arose from the chiral homology of Beilinson and Drinfeld [BD04].

Chiral homology was adapted from a conformal to a topological setting by Lurie [Lur17]. This
topological chiral homology was developed further by Ayala, Francis and Tanaka who rechris-
tened it factorisation homology [AF15, AFT17].

Ayala and Francis showed that factorisation homologies satisfy a generalisation of the
Eilenberg-Steenrod axioms for singular homology [AF15], so may be interpreted as a generalisa-
tion of homology which is tailor–made for topological manifolds rather than general topological
spaces. In particular, factorisation homologies satisfy excision. Certain factorisation homologies
are known to recover other homology theories, for example if A is an abelian group then

∫
M
A

is simply given by the singular homology H∗(M,A), and if A is an associative algebra then∫
S1(A) is the Hochschild homology HH•(A); see [AF19] for elaboration and further examples.

1.2 Topological Quantum Field Theory

A major motivation for the development of factorisation homology comes from topological
quantum field theory. Topological quantum field theory was inspired by Witten’s formulation of
supersymmetric quantum field theories in terms of the differential geometry of certain infinite–
dimensional manifolds [Wit82]. Topological quantum field theories are toy–model quantum field
theories: non-relativistic topologically invariant quantum field theories where the manifolds are
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assumed to be finite–dimensional. Their mathematical formulation was developed by Atiyah
[Ati88] who modelled the definition on Segal’s formulation for conformal field theory [Seg88].
A n-dimensional topological quantum field theory (TQFT) is a symmetric monoidal functor
Z : Bordtn → C⊗ from the bordism category Bordtn , whose objects are closed (n − 1)–
dimensional manifolds and whose morphisms are n-dimensional cobordisms, to some symmetric
monodial category C⊗ which was classically chosen to be the category of vector spaces Vectk.
Despite TQFTs being physically toy–models, they are of significant interest in low dimensional
topology as the assignment M 7→ Z(M) defines a topological invariant of the closed manifold M .
These invariants are sometimes classical invariants of low dimensional topology, for example,
the 3-dimensional Chern–Simons TQFT recovers the Jones polynomial and the 4–dimensional
supersymmetric gauge theory TQFT recovers Donaldson invariants.

One can extend the definition of a n–dimensional TQFT by replacing C⊗ with a suitable
symmetric monoidal n–category and defining an n–categorical version of Bordtn with the n–
morphisms being n–dimensional cobordisms between (n−1)–dimensional manifolds, the (n−1)-
morphisms being (n− 1)–dimensional cobordisms between (n− 2)–dimensional manifolds, and
so on until one reaches 0–dimensional manifolds, i.e. points, which are the objects of Bordtn . A
fully extended 2–dimensional TQFT differs from an ordinary 2–dimensional TQFT by allowing
surfaces with corners. Baez and Dolan [BD04] conjectured that these fully extended TQFTs
are fully determined by their value at a point and that every fully dualisable object gives rise to
a fully extended TQFT. This is called the Cobordism Hypothesis and a sketch proof of it was
provided by Lurie [Lur09]. By the Cobordism Hypothesis, to define a fully extended TQFT
it is enough to define a fully dualisable object; however, using this formulation it it far from
clear how this TQFT acts on manifolds. Scheimbauer shows that one can use n–dimensional
factorisation homology to construct a fully extended TQFT [Sch14].

1.3 Quantum Character Varieties

We now turn from considering general factorisation homologies of manifolds to the factorisation
homologies of surfaces with coefficients in the representations of quantum groups.

Fix a connected reductive Lie group G such that its Lie algebra g = Lie(G) is semisimple.
Drinfeld defined a quantisation Uq(g) of the universal enveloping algebra of g which is called
the quantum group of g [Dri87]. Throughout this thesis we shall assume that q ∈ C is generic
i.e. not a root of unity. We define Repq(G) to be the category of integrable representations
of Uq(g). Ben-Zvi, Brochier, and Jordan show that the factorisation homology

∫
Σ0

Repq(G)
of the punctured surface Σ0 is equivalent to the category AΣ0âĂŤ-mod of internal modules
for some algebra object AΣ0 which is determined combinatorially from the gluing pattern of
Σ0 [BZBJ18a]. They also relate the factorisation homology

∫
Σ Repq(G) of a non-punctured

surface Σ to the punctured case [BZBJ18b].
The representation variety RG(Σ) of the surface Σ consists of all the homomorphisms from

the fundamental group π1(Σ) to the connected reductive Lie group G. There are two widely
studied invariants of Σ based on the representation variety: the character stack ChG(Σ) =
RG(Σ)/G which is the quotient of the representation variety by G which acts on it by conju-
gation, and the character variety ChG(Σ) = RG//G which instead takes the affine categorical
quotient.

Ben-Zvi, Brochier and Jordan show that a quantisation of the character stack ChG(Σ) is
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given by the algebra object AΣ for punctured surfaces and a Hamiltonian reduction of this
algebra object for closed surfaces [BZBJ18a, BZBJ18b]. However, in this thesis we shall instead
concern ourselves with quantisations of the character variety ChG(Σ).

The character variety ChG(Σ) has a canonical Poisson structure which was defined by
Atiyah–Bott and Goldman [AB83, Gol84], so by a quantisation of the character variety we
mean a deformation with respect to this Poisson bracket. Ben-Zvi, Brochier, and Jordan
[BZBJ18a] show that AΣ0 = (End(AΣ0))Uq(()g), the algebra of invariants of AΣ0 under the
action of Uq(()g), is a quantisation of the character variety ChG(Σ0) of the punctured surface
Σ0 [BZBJ18a].

The main result of Chapter 3 is finding this algebra of invariants for the four–punctured
sphere Σ0,4 and punctured torus Σ1,1 with respect to Uq(sl2):

Theorem 1.3.1. Let A := ( a11 a12
a21 a22 ) B :=

(
b11 b12
b21 b22

)
and C := ( c11 c12

c21 c22 ) be the matrices formed
out of the 12 generators of

∫
Σ0,4

Repq(SL2). The algebra of invariants AΣ0,4 of the four-
punctured sphere with respect to

∫
Σ Repq(G) has a presentation with generators the quantum

traces E := Trq(AB), F := Trq(AC), G := Trq(BC), s := Trq(A), t := Trq(B), u :=
Trq(C) v := Trq(ABC)†, and relations

FE = q2EF + (q2 − q−2)G+ (1− q2)(sv + tu),

GE = q−2EG+ q−2(q2 − q−2)F − (1− q2)(su+ q−2tv),

GF = q2FG + (q2 − q−2)E + (1− q2)(st+ uv),

EFG =


− E2 − q−4F 2 −G2 − q−4(s2 + t2 + u2 + v2)
+ (st+ uv)E + q−2(su+ tv)F + (sv + tu)G
− stuv + q−6(q2 + 1)2

and s, t, u, v are central. Furthermore, the monomials

{
EmFnGlsatbucvd

∣∣ m,n, l, a, b, c, d ∈ N0;mnl = 0
}

are a Poincaré-Birkhoff-Witt (PBW) basis for the algebra.

Theorem 1.3.2. Let A := ( a11 a12
a21 a22 ) and B :=

(
b11 b12
b21 b22

)
be the matrices formed out of the 8

generators of
∫

Σ1,1
Repq(SL2). The algebra of invariants AΣ1,1 of the punctured torus with

respect to
∫

Σ Repq(G) has a presentation given by generators X := Trq(A), Y := Trq(B), Z :=
Trq(AB) and relations:

Y X − q−1XY = (q − q−1)Z;

XZ − q−1ZX = −q−3(q − q−1)Y ;

ZY − q−1Y Z = −q−3(q − q−1)X.

It has a central element

L := q5XZY + q3Y 2 − q4Z2 + q3X2 − (q − q−1),

†They correspond to loops around two punctures as depicted for in Figure 3.5 for A = x1, B = x2 and
C = x3.
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and a PBW basis {
XαY βZγ

∣∣ α, β, γ ∈ N0
}
.

Besides this algebra of invariants, there are other known quantisations of ChG(Σ) most
especially when G = SL2. We can use the presentations from Theorems 1.3.1 and 1.3.2 to
compare different quantisations for these two example surfaces. One quantisation of ChSL2(Σ)
is given by Teschner and Vartanov’s quantisation of the moduli space of flat connections Ab(Σ)
which uses the four–punctured sphere and punctured torus as base cases [VT13]. In Chapter 3
we construct isomorphisms between the algebra of invariants AΣ and Ab(Σ) for both surfaces.
Another particularly interesting quantisation of the character variety ChSL2(Σ) is given by the
Kauffman bracket skein algebra.

1.4 Skein Algebras

Skein algebras and modules are a generalisation of knot polynomials. A knot polynomial is a
knot invariant which to each link L assigns an ordinary or Laurent polynomial. The first knot
polynomial was the Alexander polynomial ∆L(x) which was defined in 1928 [Ale28], and for
almost 50 years it remained the only knot polynomial. In 1969 Conway [Con70] showed that
Alexander polynomial ∆L(x) was characterised by the skein relations

x = − ,

= 1.

In a couple of talks at the end of the 70s he proposed considering the free Z[z]–module over
oriented links in a oriented 3–manifold, and the submodule generated by quotienting by the
skein relations: he called this submodule the linear skein module; however, he published nothing.
This idea was then developed by Giller, Kauffman, Lickorish, Millett, Przytycki and Turaev
during the 80s [Gil82, Kau83, Kau87, LM87, Prz91, Tur97]. A skein module may be viewed as
a generalisation of the 1st homology group of a manifold where the cycles have been replaced
with general links.

A major impetus for the study of skein relations was the discovery of the Jones polynomial
[Jon97], and in particular Jones’ realisation that the Jones polynomial is characterised by the
skein relations

(t1/2 − t−1/2) = t−1 −t ,

= 1.

This quickly lead to the HOMPFLY polynomial which simultaneously generalised both the
Alexander and Jones polynomial and is also defined in terms of skein relations [FYH+85]. For
a general survey see [Prz06].

As has already been mentioned the Kauffman bracket skein algebra gives a quantisation of
the character variety ChSL2(Σ) [Bul97, PS00]†. If we have a surface Σ, we can define its skein
†This is actually a result about Kauffman bracket skein modules and quantisations of the character variety

ChSL2 (M) of the 3–dimensional manifold M , but we shall only consider surfaces in this thesis. It has also been
generalised to SLN using the HOMPFLY skein modules by Sikora [Sik05].
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algebra to be the skein module of Σ× [0, 1]; it has a natural algebra structure given by stacking.
The Kauffman bracket skein algebra/module is based on the Kauffman bracket polynomial.
The Kauffman bracket polynomial 〈L〉 of a framed link L is defined using the following skein
relations

= q−1 +q ,

= −q2 − q−2.

It is an invariant of framed links i.e. it is invariant under the 2nd and 3rd Reidemeister moves
but not the 1st. The Kauffman bracket polynomial can be normalised to make it invariant under
the 1st Reidemeister move and this recovers the Jones polynomial. It can also been extended
using the relation

= −

to give a Vassiliev invariant of singular framed knots.
We show in Chapter 3 that

Proposition 1.4.1. The algebra of invariants AΣ with respect to Uq(sl2) is isomorphic to the
Kauffman bracket skein algebra Sk(Σ) when Σ is the four–punctured sphere or the punctured
torus.

In Chapter 3 we also construct the isomorphisms.

1.5 Skein Categories

After showing the relation of
∫ Pr

Σ Repq(SL2) to
the Kauffman bracket skein algebra Sk(Σ) for the
surfaces Σ = Σ0,4 and Σ1,1 via the algebra of in-
variants of the factorisation homology, we move
on to the more general question: Is there any gen-
eral relation between

∫ Pr
Σ Repq(G) and skein the-

ory? In order to answer this question we intro-
duce the skein category SkV (Σ) for a fixed k–
linear ribbon category V such as Repfd

q (G) the
category of finite–dimensional integrable represen-
tations of Uq(sl2). The notion of skein category we use is that of Johnson-Freyd [Joh15] which
was inspired by the ideas of Walker [Wal06, MW11] and Turaev’s ribbon diagram category
[Tur94, Tur97]. The ribbon diagram category RibbonV is the category of V –coloured ribbon
tangles in [0, 1]3 and were originally developed in the context of the Reshetikhin–Turaev invari-
ants for 3–manifolds. Turaev shows that there is a canonical surjective and full ribbon functor
eval : RibbonV → V . The skein category SkV (Σ) is the k–linear category whose

1. Objects are finite sets of framed points in Σ;

2. Morphisms are k–linear combinations of V –coloured ribbon tangles in Σ× [0, 1] up to the
equivalence that F ∼ G if they are equal outside a cube and eval(F |cube) = (G|cube).
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For a more precise definition see Section 4.2.1.
As we have already mentioned, one of the defining features of a factorisation homology∫

Σ V is that it satisfies excision: for any collar gluing Σ = M ∪A N there is an equivalence of
categories ∫

M∪AN
V '

∫
M

V ⊗∫
A

V

∫
N

V ,

where the relative tensor product is defined as the colimit of the 2–sided bar construction in
the ambient category C⊗.

In Chapter 4 we show that if we take C⊗ to be Cat×k , the (2, 1)–category of k–linear
categories, then this relative tensor product M ×A N is M ×N with adjoined isomorphisms
ι : (mC a, n)→ (m, aB n) which relate the action of A on M to its action on N (see Section
4.1 for details). As the skein category SkV (Σ) is a k–linear category this defines the relative
tensor product of skein categories. We then prove that skein categories satisfy excision:

Theorem 1.5.1. For any collar gluing Σ = M ∪A N there is an equivalence of categories

SkV (M ∪A N) ' SkV (M)⊗SkV (A) SkV (N).

Using this we conclude

Theorem 1.5.2. The functor SkV ( ) : Mfldtfr → Cat×k is the k–linear factorisation homology∫Catk V with respect to the E2–algebra defined by V .

Corollary 1.5.3. The free cocompletion of SkRepfd
q (G)(Σ) is the presentable factorisation ho-

mology
∫ Pr

Σ Repq(G).

The excision of skein categories was conjectured by Johnson-Freyd [Joh15] again based on
the ideas of Walker [Wal06, MW11] and the relation to presentable factorisation homology by
taking the free cocompletion was conjectured in [BZBJ18a]. The is also a result of Yetter [Yet92]
which proves a similar excision result for universal braid categories in Set, and the topological
parts of the proof of excision are based on this proof.
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Chapter 2

Background

2.1 The Categories Catk and Pr

In this section we shall define two (2, 1)–categories Catk and Pr which will be the ambient
categories of the factorisation homologies considered in this thesis. The definitions in this
section may be found in Borceux’s ‘Handbook of Categorical Algebra’ [Bor94a, Bor94b] and
follow the terminology of [BZBJ18a].

Definition 2.1.1. A (2, 1)–category C is a 2–category for which all 2–morphisms have inverses.

Remark 2.1.2. There are two notions of 2–category: strict and weak. Throughout this thesis
we shall assume all 2–categories are strict i.e. categories enriched over Cat. We shall refer to
weak 2–categories by their original name of bicategories. However, ∞–categories may strict or
weak.

2.1.1 The Category Catk
Definition 2.1.3. Let k be a commutative ring with identity. The category kMod is the
category of left k–modules and module homomorphisms. If k is a field then kMod is Vectk,
the category of k–vector spaces and k–linear transformations.

Definition 2.1.4. A k–linear category is a category enriched over kMod, a k–linear functor is
a kMod–enriched functor, and a k–linear natural transformation is a kMod–enriched natural
transformation.

Definition 2.1.5. The category of k–linear categories Catk is the (2, 1)–category whose

1. objects are small k–linear categories;

2. 1–morphisms are k–linear functors;

3. 2–morphisms are k–linear natural isomorphisms.

2.1.2 The Category Pr

We shall begin by defining Cocomp which has Pr as a subcategory.

Definition 2.1.6. Given k–linear functors F : D → C and G : Dop → kMod, let ColimG(F )
denote the k–linear colimit of F weighted by G.
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Definition 2.1.7. The k–linear category C is cocomplete if the colimit ColimG(F ) exists for
all choices of F and G when D is small.

Definition 2.1.8. A functor H : C → E preserves the k–linear colimit of F : D → C weighted
by G : Dop → C if

H (ColimG(F )) = ColimG(H(F )).

A functor is cocontinuous if it preserves all small limits.

Definition 2.1.9. We denote by Cocomp the (2, 1)-category with:

1. objects: locally small cocomplete k–linear categories;

2. 1-morphisms: cocontinuous k–linear functors;

3. 2-morphisms: k–linear natural isomorphisms.

The subcategory Pr ⊂ Cocomp consists of categories whose objects are ‘nice’ colimits of
’small’ objects.

Definition 2.1.10. A category C is filtered if

1. C is non-empty;

2. For any two objects c1, c2 ∈ C there exists an object c3 ∈ C with morphisms c1 → c3 and
c2 → c3;

3. For any two morphisms f, g : c1 ⇒ c2 there is a morphism h : c2 → c3 such that
h ◦ f = h ◦ g.

A filtered colimit ColimG(F ) is a colimit where D is a small filtered category.

Definition 2.1.11. An object c ∈ C of a k–linear category C is finitely presentable or compact
if the corepresentable functor C (c, ) : C → kMod preserves filtered colimits.

Definition 2.1.12. A category C is locally finitely presentable if it is a locally small, cocomplete
and is generated under filtered colimits by a set of finitely presentable objects.

Remark 2.1.13. There is also a notion of a locally presentable category. A locally presentable
category is a category which is locally small, cocomplete and is generated under κ-filtered
colimits by a set of κ-compact objects for some regular cardinal κ. A locally finitely presentable
category is a locally presentable category with κ = ℵ0. By presentable we shall always mean
locally finitely presentable unless stated otherwise.

Definition 2.1.14. A functor F : C → D is compact if it preserves compact objects i.e. if c is
a compact object of C then F (c) is a compact object of D .

Definition 2.1.15. Let Pr denote the subcategory of Cocomp with:

1. objects: locally finitely presentable k–linear categories;

2. 1-morphisms: compact cocontinuous k–linear functors;

3. 2-morphisms: k–linear natural isomorphisms.
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2.2 Monoidal and Ribbon Categories

Definition 2.2.1. [Bor94b] A monoidal linear category C is a k–linear category equipped with

1. a functor ⊗ : C × C → C : (a, b) 7→ a⊗ b called the monoidal product or tensor product;

2. an object 1C ∈ C called the monoidal unit;

3. a natural isomorphism α : ( ⊗ )⊗ → ⊗ ( ⊗ ) with components αa,b,c : (a⊗ b)⊗ c→
a⊗ (b⊗ c) called the associator ;

4. natural isomorphisms

λ : 1C ⊗ → with components λa : 1C ⊗ a→ a,

ρ : ⊗ 1C → with components ρa : a⊗ 1C → a

called the left and right unitor respectively

which make the following diagrams commute for all a, b, c, d ∈ C

((a⊗ b)⊗ c)⊗ d

(a⊗ (b⊗ c))⊗ d

a⊗ ((b⊗ c)⊗ d) a⊗ (b⊗ (c⊗ d))

(a⊗ b)⊗ (c⊗ d)

αa,b,c⊗Idd

αa,b⊗c,d

Ida⊗αb,c,d

αa,b,c⊗d

αa⊗b,c,d

(a⊗ 1C )⊗ b a⊗ (1C ⊗ b)

x⊗ y

αx,1C ,y

ρa⊗Idb Ida⊗λb

The monoidal category may be denoted C or C⊗. If the associator and unitors are trivial then
the monoidal category is strict.

Remark 2.2.2. If C is a category enriched over the monoidal category V , then we require that
the monoidal structure is compatible with the enrichment, that is we require ⊗ to be a V –
enriched functor, and α and λ to be V –enriched natural transformations. So if C is a k–linear
category then we require ⊗, α, λ and ρ to be k–linear, and if C is a 2–category then we require
⊗ to be a (strict) 2–functor, and λ and ρ to be 2–natural transformations.

Remark 2.2.3. In this thesis our examples of ribbon categories will be non–strict; however, our
applications of ribbon categories, for example to colour ribbons, will require strict monoidal
categories. This is resolved by taking the monoidally equivalent strict ribbon category whenever
a strict ribbon category is required, and this we shall do without further comment.

Remark 2.2.4. Monoidal categories† have a diagrammatic calculus in which the morphism f :
V1 ⊗ · · · ⊗ Vn →W1 ⊗W2 is depicted

†Technically the diagrammatic calculus is for strict monoidal categories.
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The identity morphism is depicted without a coupon, the composition of morphisms is depicted
by stacking and tensoring of morphisms is depicted by placing the diagrams side–by–side. For
a survey on the diagrammatic calculi of monoidal categories see [Sel11].

We shall now define the structures required to turn the k–linear monoidal category C into
a k–linear ribbon category.

Definition 2.2.5 [Kas95]. Let C be a k–linear monoidal category. The flip functor on the
category C is the k–linear functor

τ : C × C → C × C : τ(a, b) = (b, a) and τ(f, g) = (g, f) ∀a, b ∈ C and f, g morphisms in C .

A braiding on C is a k–linear natural isomorphism B : ⊗ → τ⊗ which is compatible with the
monoidal structure:

αb,c,a ◦Ba,b⊗c ◦ αa,b,c = Idb⊗Ba,c ◦ αb,a,c ◦Ba,b ⊗ Idc
α−1
c,a,b ◦Ba⊗b,c ◦ α

−1
a,b,c = Ba,c ⊗ Idb ◦α−1

a,c,b ◦ Ida⊗Bb,c

for all a, b, c ∈ C . A monoidal category with a braided is called a braided monoidal category. A
symmetric monoidal category C is a braiding monoidal category for which the braiding satisfies

By,xBx,y = Idx⊗y

for all x, y ∈ C .

Figure 2.1: The diagrammatic calculus for monoidal categories
can be adapted to give a diagrammatic calculus for braided
monoidal categories for further details see [JS93, Sel11]. The
braiding BV,W is depicted of the left and its inverse B−1

V,W is de-
picted on the right.

Figure 2.2: The naturality of the braiding means that
coupons may pass through the braiding.

Figure 2.3: For a strict monoidal category, the first asso-
ciativity condition on the braiding reduces to BU,V⊗W =
(IdV ⊗BU,W )◦(BU,V ⊗IdW ). This means that strands can
always be crossed pairwise (the second associativity condi-
tion is just the mirror image).
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Figure 2.4: A monoidal category is symmetric if this identity
holds.

Definition 2.2.6 [Tur94]. Let C be a k–linear monoidal category and a ∈ C . If it exists, the
dual of a is an object a∗ such that there are two morphisms

εa : 1C → a⊗ a∗(unit) and ηa : a∗ ⊗ a→ 1C (counit)

which satisfy the following identities

(Ida⊗ηa)(ηa ⊗ Ida) = Ida,

(ηa ⊗ Ida∗)(Ida∗ ⊗εa) = Ida∗ (zigzag identities).

A monoidal category has duality is every object has a dual.

Figure 2.5: The dual of an object V is depicted either by labelling
the strand with V ∗ or reversing the direction of the strand and
labelling it with V . The unit and counit are depicted in this figure.

Figure 2.6: The zigzag identities simply mean that one can
straighten strands as depicted.

Figure 2.7: If a category C has duality, then duality defines
a endofunctor on C with the dual of a map f : X → Y

being the map f∗ : Y ∗ → X∗ defined by composing f with
evaluation and coevaluation maps as depicted in this figure.

Definition 2.2.7 [Tur94]. Let C be a braided monoidal k–linear category with a braiding B.
A twist in C is a k–linear natural isomorphism which on the component a ∈ C is θa : a → a

and satisfies
θa⊗b = Bb,aBa,b(θa ⊗ θb)

for all a, b ∈ C . A braided monoidal category with duality and a twist is a ribbon category if
the twist and duality are compatible, that is

(θa ⊗ Ida∗)ηa = (Ida⊗θa∗)εa

for all a ∈ C .
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Figure 2.8: The graphic calculus of ribbon categories can be given
by thickening the strands to ribbons (framed strands). The twist
is just a twist of the ribbon. Alternatively, one can represent the
ribbon category using just the cores of the bands if one represents
the twists as loops. We shall defined this graphical calculus for-
mally in Section 4.2.1 as it important in the definition of a Skein
category.

Figure 2.9: This figure shows the compatibility relation of
the twist with the braiding.

2.2.1 Monoidal Structure of Catk and Pr

The (2, 1)–category Catk is a strict monoidal category with the categorical product × as
monoidal product:

1. The product C×D has as objects tuples (m,n) where m ∈ C and n ∈ D and as morphisms
tuples (f, g) where f : m→ m′ is a morphism in C and g : n→ n′ is a morphism in D .

2. The monoidal unit 1Cat is the category Pt with a single object and a single morphism
which is the identity morphism on this object

The (2, 1)–category Pr is also a strict monoidal category but the monoidal product � is
given by the Kelly–Deligne tensor product†.

Definition 2.2.8. The Kelly–Deligne tensor product of A ,B ∈ Pr is a category A �B ∈ Pr
together with a bilinear functor S : A ×B → A �B which is cocontinuous in each variable
separately and defines an equivalence of categories

Cocont(A �B,C ) ' Cocont(A ,B; C ) ∼= Cocont(A ,Cocont(B,C ))

for all C ∈ Pr given by composing functors with S: Cocont(A � B,C ) is the category of
cocontinuous functors A �B → C and Cocont(A ,B; C ) is the category of bilinear functors
A ×B → A �B which are cocontinuous in each variable separately.

Remark 2.2.9. Kelly [Kel82] proved the existence of A �B for categories A ,B ∈ Rex, the
(2, 1)–category of essentially small, finitely cocomplete categories with right exact functors as 1–
morphisms and natural isomorphisms as 2–morphisms. Franco in [LF13] shows that for abelian
categories A ,B, this tensor product A �B is the Deligne tensor product of abelian categories
[Del90] when the Deligne tensor product exists; hence, the name Kelly-Deligne tensor product.
For the existence of the Kelly-Deligne tensor product in Pr see [RG17, Section 2.4.1] and the
references therewithin.
†The monoidal unit of Pr� is kMod.
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2.3 Factorisation Homology

In this section we shall define factorisation homology. In the remainder of this thesis we shall
only consider factorisation homologies of surfaces, that is fix n = 2, and we shall assume C⊗ =
Pr� or Catk: in Chapter 3 we use Pr� and in Chapter 4 we use both. General introductory
references for factorisation homology include Ginot [Gin15] and Ayala and Francis [AF15, AF19].

Definition 2.3.1. A smooth manifold M is finitary if it has a finite open cover U such that if
{Ui } is a subset of U then intersection ∩iUi is either empty or diffeomorphic to Rn.

Remark 2.3.2. Manifolds and surfaces are assumes throughout this thesis to be finitary and
smooth.

Definition 2.3.3. Let X and Y be smooth framed manifolds and let Emb(X,Y ) denote the
∞–groupoid of the topological space of smooth embeddings of X into Y which respect the
framings with the smooth compact open topology, i.e the objects of Emb(X,Y ) are smooth
framed embeddings, the 1–morphisms are isotopies, the 2–morphisms are homotopies between
the 1–morphisms and so on.

Definition 2.3.4. Let Mfldnfr be the symmetric monodial∞–category whose objects are framed
manifolds, whose Hom–space of morphisms between manifolds X and Y is the ∞–groupoid
Emb(X,Y ), and whose symmetric monodial structure is given by disjoint union.

Definition 2.3.5. Let Discn be the full subcategory of Mfldnfr of disjoint unions of Rn. Denote
the inclusion functor by I : Discn →Mfldnfr.

Definition 2.3.6. An En–algebra is a symmetric monoidal functor F : Discn → C⊗ where
C⊗ is a symmetric monoidal∞–category. As F is determined on objects by its value of a single
disc, we define E := F (Rn), and we use E to refer to the associated En–algebra.

Definition 2.3.7 [AF15]. A symmetric monoidal ∞-category C is ⊗–presentable if

1. C is locally presentable with respect to an infinite cardinal κ and

2. the monoidal structure distributes over small colimits i.e. the functor C ⊗ : C → C

carries colimit diagrams to colimit diagrams.

Remark 2.3.8. Both Pr� and Cat×k are ⊗–presentable [BZBJ18a, KL01, Kel05].

Definition 2.3.9. Let C⊗ be a ⊗–presentable† symmetric monoidal ∞–category and let F :
Discn → C⊗ be an En–algebra with E := F (Rn). The left Kan extension of the diagram

Discn C⊗

Mfldnfr

F

I ∫
E

is called the∗ factorisation homology with coefficients in E ; its image on the manifold Σ is called
the factorisation homology of Σ over E and is denoted

∫
Σ E .

†Slightly weaker conditions than ⊗–presentable are possible see [AF15]
∗As factorisation homology is defined via a universal construction we have uniqueness up to a contractible

space of isomorphisms.
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2.3.1 Excision

Factorisation homology like classical homology satisfies an excision property: the factorisation
homology of a cylinder gluing of two manifolds can be obtained from the factorisation ho-
mology of the original manifolds by tensoring relative to the submanifold glued along; hence,
factorisation homology is determined locally.

Figure 2.10: An example of the maps which induce the monoidal and module structures of the
factorisation homologies.

When Σ = C × [0, 1] for some (n− 1)–dimensional manifold C, the factorisation homology∫
C×[0,1] E can be equipped with a monoidal structure induced by the embedding

(C × [0, 1]) t (C × [0, 1]) ↪−→ C × [0, 1]

which retracts both copies of C× [0, 1] in the second coordinate and includes them into another
copy of C × [0, 1].

Let Σ = M tC×[0,1] N be the collar gluing of the n–dimensional manifolds M and N along
C × [0, 1]. The embeddings

M t (C × [0, 1]) ↪−→M

(C × [0, 1])×N ↪−→ N

induces a right
∫
C×[0,1] E –module structure on

∫
M

E and a left
∫
C×[0,1] E –module structure on∫

N
E . In other words,

∫
C×[0,1] E is an algebra object in C⊗, and

∫
M

E and
∫
N

E are right and
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left modules over this algebra object.

Definition 2.3.10. Let C⊗ be a ⊗-presentable symmetric monoidal ∞–category. Let A be
an algebra object in C⊗, and let M and N ∈ C⊗ be right and left modules respectively over
the algebra object A . The relative tensor product M ⊗A N is the colimit of the 2-sided bar
construction

. . . M ⊗A ⊗A ⊗N M ⊗A ⊗N M ⊗N

Remark 2.3.11. If C⊗ = Pr� or Catk then this 2–sided bar construction strictifies after the
second step as they are 2-categories. We shall show in Section 4.1 that this colimit is given
by the relative tensor product of Tambara (see Definition 4.1.7) which is called the relative
Kelly–Deligne tensor product in [BZBJ18a].

Theorem 2.3.12 [AF15]. Let Σ = M tC×[0,1] N be the collar gluing of the n–dimensional
manifolds M and N along C × [0, 1] where C is a (n − 1)–dimensional manifold. There is an
equivalence of categories ∫

MtC×[0,1]

E '
∫
M

E ⊗∫
C×[0,1]

E

∫
N

E .

2.3.2 Other Properties of Factorisation Homology

As ∅ is the identity for the monoidal product t in Mfldfr,∫
∅
E ' 1C⊗ .

We can embed the empty manifold into any manifold, and this embedding ∅ → Σ induces a
morphism 1C⊗ '

∫
∅ E →

∫
Σ E , giving a pointed structure to factorisation homology.

Theorem 2.3.13 [BZBJ18a, AF15, AFT17]. Let E be an E2–algebra in C⊗. The functor
∫

E

is characterised by the following properties:

1. If U is contractible then then is an equivalence in C⊗∫
U

E ' E ;

2. If M ∼= C × [0, 1] for some 1–manifold with corners C then the inclusion of intervals
inside a larger interval induces a canonical E1–structure on

∫
M

E .

3.
∫

E satisfies excision (see Theorem 2.3.12).

2.4 Reduction Systems and the Diamond Lemma

Both the universal enveloping algebra of a Lie algebra U(g) and its quantum group Uq(g) have
a Poincare–Birkhoff–Witt basis (PBW–basis). In the case of U(g) this means that if x1, . . . , xl

is an ordered basis of g then U(g) has a vector space basis given by the monomials

yk1
1 yk2

2 . . . ykll
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where ki ∈ N0 and xi 7→ yi via the map g → U(g). In the case of Uq(g) this means that Uq(g)
has a vector space basis given by the monomials

(X+
1 )a1 . . . (X+

n )anKb1
1 . . .Kbn

n (X−1 )c1 . . . (X−n )cn

where ai, ci ≥ 0 and bi ∈ Z.
In this section we recall the definitions and results needed to define and prove the existence

of such bases. We will use these results in Section 3.2 and Section 3.5 to provide PBW–bases for
the algebra objects and invariant algebras of the factorisation homology of the four–punctured
sphere and punctured torus with coefficients in Repq(SL2). The definitions given in this section
can be found [Ber78] except those relating to the reduced degree which can be found in [Cas17],
and the main result is the Diamond lemma for rings proven by Bergman in [Ber78]. Let k be
a commutative ring with multiplicative identity and X be an alphabet (a set of symbols from
which we form words).

Definition 2.4.1. A reduction system S consists of term rewriting rules σ : Wσ 7→ fσ where
Wσ ∈ 〈X〉 is a word in the alphabet X and fσ ∈ k〈X〉 is a linear combination of words. A
σ–reduction rσ(T ) of an expression T ∈ k〈X〉 is formed by replacing an instance of Wσ in
T with fσ. For example, if X = 〈a, b〉 and S = {σ : ab 7→ ba } then rσ(T ) = aba + a is a
σ–reduction of T = aab+ a. A reduction is a σ–reduction for some σ ∈ S.

Definition 2.4.2. The five–tuple (σ, τ, A,B,C) with σ, τ ∈ S and A,B,C ∈ 〈X〉 is an overlap
ambiguity if Wσ = AB and Wτ = BC and an inclusion ambiguity if Wσ = B and Wτ = ABC.
These ambiguities are resolvable if reducing ABC by starting with a σ–reduction gives the
same result as starting with a τ–reduction. For example if S = {σ : ab 7→ ba, τ : ba 7→ a } then
(σ, τ, a, b, a) is an overlap ambiguity which is resolvable as aba rσ7−→ ba2 rτ7−→ a2 gives the same
expression as aba rτ7−→ a2.

Definition 2.4.3. A semigroup partial ordering ≤ on 〈X〉 is a partial order such that B ≤ B′

implies that ABC ≤ AB′C for all words A,B,B′, C; it is compatible with the reduction system
S if for all σ ∈ S the monomials in fσ are less than Wσ.

Definition 2.4.4. A reduction system S satisfies the descending chain condition or is termi-
nating if for any expression T ∈ k〈X〉 any sequence of reductions terminates in a finite number
of reductions with an irreducible expression.

Lemma 2.4.5 The Diamond Lemma [Ber78]. Let S be a reduction system for k〈X〉 and let
≤ be a semigroup partial ordering on 〈X〉 compatible with the reduction system S with the
descending chain condition. The following are equivalent:

1. All ambiguities in S are resolvable (S is locally confluent);

2. Every element a ∈ k〈X〉 can be reduced in a finite number of reductions to a unique
expression rS(a) (S is confluent);

3. The algebra R = k〈X〉/I, where I is the two sided ideal of k〈X〉 generated by the elements
(Wσ−fσ), can be identified with the k–algebra k〈X〉irr spanned by the S–irreducible mono-
mials of 〈X〉 with multiplication given by a · b = rS(ab). These S–irreducible monomials
are called a Poincare–Birkhoff–Witt–basis of R.
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Remark 2.4.6. Bergman’s Diamond Lemma is an application to ring theory of the Diamond
Lemma for abstract rewriting systems. An abstract rewriting system is a set A together with a
binary relation → on A called the reduction relation or rewrite relation.

1. It is terminating if there are no infinite chains a0 → a1 → a2 → . . ..

2. It is locally confluent if for all y ←− x −→ z there exists an element y ↓ z ∈ A such that
there are paths y → · · · → (y ↓ z) and z → · · · → (y ↓ z).

3. It is confluent if for all y ←− . . . ←− x −→ . . . −→ z there exists an element y ↓ z ∈ A

such that there are paths y → · · · → (y ↓ z) and z → · · · → (y ↓ z). In a terminating
confluent abstract rewriting system an element a ∈ A will always reduce to a unique
reduced expression regardless of the order of the reductions used.

The Diamond Lemma (or Newman’s lemma) for abstract rewriting systems states that a ter-
minating abstract rewriting system is confluent if and only if it is locally confluent.

x

b c

a b ↓ c d

a ↓ d

...... ...

...

... ...

Figure 2.11: If the abstract term rewriting system is
locally confluent there exists b ↓ d forming a small di-
amond shape. If it confluent there exists a ↓ d form-
ing a larger diamond shape. The Diamond lemma
is proven by patching together the small diamonds
to give the larger diamonds and inducting on path
length, hence the name.

In this thesis the semigroup partial ordering we shall use is ordering by reduced degree:

Definition 2.4.7. Give the letters of the finite alphabet X an ordering x1 ≤ · · · ≤ xN . Any
word W of length n can be written as W = xi1 . . . xin where xij ∈ X. An inversion of W is a
pair k ≤ l with xik ≥ xil i.e. a pair with letters in the incorrect order. The number of inversions
of W is denoted |W |.

Definition 2.4.8. Any expression T can be written as a linear combination of words T =∑
clWl. Define ρn(T ) :=

∑
length(Wl)=n,cl 6=0 |Wl|. The reduced degree of T is the largest n such

that ρn(T ) 6= 0.

Definition 2.4.9. Under the reduced degree ordering, T ≤ S if

1. The reduced degree of T is less than the reduced degree of S, or

2. The reduced degree of T and S are equal, but ρn(T ) ≤ ρn(S) for maximal nonzero n.

27



28



Chapter 3

Quantum Character Varieties via
Factorisation Homology

In this chapter we wish to consider the factorisation homology of the four–punctured sphere
Σ0,4 and punctured torus Σ1,1 with coefficients in the category Repq(SL2) of integrable repre-
sentations of the quantum group Uq(sl2). Throughout this chapter we set k = C and assume
q ∈ C is not a root of unity.

3.1 Factorisation Homology of Quantum Groups

The first step is to describe
∫

Σ Repq(SL2) for Σ = Σ0,4 or Σ1,1 as a category of modules of an
algebra and give a presentation for this algebra which is a straightforward application of the
work of Ben-Zvi, Brochier and Jordan [BZBJ18a]. In this section we shall define Repq(G) and
briefly outline the relevant results from [BZBJ18a].

3.1.1 Category of Integrable Representations of Quantum Groups

Let G be a connected Lie group such that Lie(G) = g is a finite–dimensional complex semisimple
Lie algebra. Let h denote the Cartan subalgebra of g, 〈·, ·〉 denote the Killing form, and
Π = {α1, . . . , αn} denote the simple roots.

Definition 3.1.1. A representation of U(g) is integrable if it is the differential of a representa-
tion of G.

Remark 3.1.2. As SL2 is simply–connected every representation of sl2 = Lie(SL2) is integrable.

Proposition 3.1.3 [CP94]. Every finite–dimensional Uq(g)–module is semisimple and the de-
composition corresponds to the decomposition of finite–dimensional g–modules. The simple
modules are characterised by their highest weights. The highest weights of Uq(g) are

ω = σ(αi)q〈αi,λ〉

for any homomorphism σ : ZΠ→ ±1 and highest weight λ of g.

Definition 3.1.4. The finite–dimensional Uq(g)–module V1⊕· · ·⊕Vn is of type 1 if the highest
weight of each simple module Vj has the form q〈αi,λj〉 for some highest weight λj of g i.e σj = 1.
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Corollary 3.1.5. The finite–dimensional Uq(g)–modules of type 1 correspond to the finite–
dimensional g–modules. Its category of finite–dimensional representations Repfd

q (G) is the
category with objects the finite–dimensional integrable modules of Uq(g) of Type 1 and morphisms
being module homomorphisms.

Definition 3.1.6. Let G be a connected Lie group such that Lie(G) = g is a finite–dimensional
complex semisimple Lie algebra. The finite–dimensional integrable representations of Uq(g) are
the finite–dimensional, type 1 Uq(g)–modules which correspond to integrable g–modules.

We are now in a position to define Repfd
q (G) and Repq(G).

Definition 3.1.7. Let G be a connected Lie group with semisimple Lie algebra g. The category
of finite–dimensional integrable representations Repfd

q (G) is the category with objects the finite–
dimensional integrable Uq(g)–modules and morphisms being module homomorphisms.

Definition 3.1.8. Let G be a connected Lie group with semisimple Lie algebra g. The category
of integrable representations Repq(G) is the category with objects being possibly infinite di-
rect sums of simple finite–dimensional integrable Uq(g)–modules and morphisms being module
homomorphisms†.

We shall now equip Repfd
q (G) with the structures of a ribbon category; Repq(G) inherits

its ribbon structure from Repfd
q (G). For more details see [CP94, ST09, KT09].

I. The monoidal product

⊗ : Repfd
q (G)×Repfd

q (G)→ Repfd
q (G)

is defined as follows: if V,W ∈ Repfd
q (G) then V ⊗W is the vector space V ⊗CW equipped

with Uq(g) action defined by g · (V ⊗W ) = (∆(g)1 · V,∆(g)2 ·W ).

II. The monoidal category Repfd
q (G) has duality. Let S denote the antipode of Uq(g). The

dual of V ∈ Repfd
q (G) is the dual vector space V ∗ = Hom(V,C) with Uq(g) action defined

by g · f(v) = f(S(g)v) for g ∈ Uq(g), v ∈ V and f ∈ V ∗.

III. We define R := (X−1⊗X−1)∆(X) where X := Jω̃h,0: ω̃h,0 is the quantum Weyl element
corresponding to the longest element ω0 of the Weyl group of g, and J is the operator which
acts on finite–dimensional representations of Uq(g) by multiplying each vector of weight µ
by q 1

2 〈µ,µ〉+〈µ,ρ〉. A braiding of Repfd
q (G) is given by cRV,W (V ⊗W ) = τV,W (Rh(V ⊗W )).

IV. The twist θ is defined as follows: θ acts on the irreducible representation Vλ of highest
weight λ as the constant q−〈λ,λ〉−2〈λ,ρ〉 where ρ ∈ h such that 〈αi, ρ〉 = di for all i.

Remark 3.1.9. Morally R should be considered as an R–matrix of Uq(g) with

J := exp

h
1

2
∑
i,j

(B−1)ijHi ⊗Hj +Hρ

 ;

however, R is not an element of Uq(g) ⊗ Uq(g), so isn’t. It is, however, an R–matrix of the
non-specialised quantum group Uh(g).
†Note that Repq(G) is the ind-completion of the category of finite dimensional modules

30



Universal R–matrices generate solutions to the Yang–Baxter equation:

R12R13R23 = R23R13R12

The Yang–Baxter equation has a physical interpretation as fol-
lows. Suppose one is modelling scattering of identical particles,
and one assumes such scattering does not create or destroy par-
ticles. One can associate to each particle in the system a vector
space V . The elastic collision of two particles is modelled by
transforming the initial state V ⊗ V by applying the R–matrix.
Now one wishes to consider the collision of three particles. Due
to relativistic effects whether the three particles collided simultaneously or pairwise, and in
which order, depends on the observer, so the collision of three particles can be modelled as
a sequence of of R–matrix applications which model the pairwise collisions. The quantum
Yang–Baxter equation is a consistency relation which ensures that the two ways of resolving
the collision pairwise give the same result.

3.1.2 Computing the Factorisation Homology for Punctured Surfaces

The factorisation homology
∫

Σ E of the punctured surface Σ is an E –module category.

Figure 3.1: An illustration of the map Σ t D → Σ. The surface Σ2,1 has a interval marked in
red along its boundary along which the disc D is attached. The resultant surface is isotopic to
Σ2,1.

Choose a interval along its boundary†.

Σ tD → Σ,

which attaches the disc D to Σ along the marked interval, induces a
∫
D E –module structure

on
∫

Σ E . As
∫
D E ' E in C⊗, this means that

∫
Σ E is a E –module. Not only is

∫
Σ E module

category, but it is also the category of modules of an algebra.

Definition 3.1.10. Let C� = Rex�. The distinguished object OE ,Σ of a factorisation homol-
ogy of Σ over E is the image of k under the pointing map Vectk →

∫
Σ E .

Definition 3.1.11. The algebra object AΣ of the factorisation homology of Σ∗ with coefficients
in E is the internal endomorphism algebra of the distinguished object

AΣ := EndE (OE ,Σ).
†The module structure depends on the choice of marking.
∗The algebra object is dependent on the choice marking of Σ
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This is called the moduli algebra of Σ in [BZBJ18a].

Proposition 3.1.12. [BZBJ18a] Let Σ be a punctured surface, and E be a rigid braided tensor
category, for example Repq(G) where G is a reductive algebraic group. We have an equivalence
of categories ∫

Σ
E ' AΣ–modRepq(G),

where AΣ is the algebra object of the factorisation homology.

Remark 3.1.13. Note that as the factorisation homology is equivalent to a category of modules
of an algebra, it is an abelian category.

There is a combinatorial description of AΣ in terms of the gluing pattern of the surface.

Definition 3.1.14. A gluing pattern is a bijection

P : { 1, 1′, . . . , n, n′ } → { 1, 2, . . . , 2n− 1, 2n }

such that P (i) < P (i′) for all i = 1, . . . , n.
A gluing pattern P determines a marked surface Σ(P ) by gluing together a disc and n handles

Hi
∼= [0, 1]2 as follows: mark the disc with 2n+ 1 boundary intervals labelled 1, . . . , 2n+ 1; for

each handle Hi mark two intervals i and i′ on the boundary; glue the handles to the disc by
identifying the interval i with the interval P (i) and the interval i′ with the interval P (i′) for all
i = 1, . . . , n. The final interval 2n+ 1 on the boundary of the disc gives Σ(P ) a marking.

Definition 3.1.15. The handles Hi and Hj , with i < j are:

1. positively linked if P (i) < P (j) < P (i′) < P (j′),

2. positively nested if P (i) < P (j) < P (j′) < P (i′),

3. positively unlinked if P (i) < P (i′) < P (j) < P (j′).

By relabelling the handles we can assume all handles are of the above forms.

Example 3.1.16. The four–punctured sphere has the simplest possible gluing pattern with
three handles

P : { 1, 1′, 2, 2′, 3, 3′ } → { 1, 2, 3, 4, 5, 6 } :

P (1) = 1, P (1′) = 2, P (2) = 3, P (2′) = 4, P (3) = 5, P (3′) = 6.

All three of its handles are positively unlinked.

Example 3.1.17. The punctured torus has the gluing pattern

P : { 1, 1′, 2, 2′ } → { 1, 2, 3, 4 } : P (1) = 1, P (1′) = 3, P (2) = 2, P (2′) = 4.

The handles H1 and H2 are positively linked.

Definition 3.1.18. Let E = Repq(G) for a reductive algebraic Lie group G, O(E ) is generated
by elements of the form vi⊗vj ∈ V ∗⊗V for some representation V ∈ E . We define the crossing
morphism

Ki,j : O(E )(i) ⊗ O(E )(j) → O(E )(i) ⊗ O(E )(j)
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1 2 3 4 5 6

1 1' 2 2' 3 3'

Figure 3.2: The gluing pattern of Σ0,4.

 1 2 3 4

1 1' 2 2'

Figure 3.3: The gluing pattern of Σ1,1.

using the braidings

where strand crossings are determined by the chosen R–matrix and antipode S of Uq(g) are as
follows:

σV,W (w ⊗ v) = τV,W ◦R(w ⊗ v);

σV ∗,W (w∗ ⊗ v) = τV ∗,W ◦ (S ⊗ id) ◦R(w∗ ⊗ v) = τV ∗,W ◦R−1(w∗ ⊗ v);

σV,W∗(w ⊗ v∗) = τV,W∗ ◦ (id⊗R) ◦R(w ⊗ v∗);

σV ∗,W∗(w∗ ⊗ v∗) = τV ∗,W∗ ◦ (S ⊗ S) ◦R(w∗ ⊗ v∗) = τV ∗,W∗ ◦R(w∗ ⊗ v∗).

As the crossing morphisms satisfy the Yang–Baxter equation, they can be used to extend the
multiplication m : O(E ) ⊗ O(E ) → O(E ) to a associative multiplication map mn : O(E )⊗n ⊗
O(E )⊗n → O(E )⊗n turning O(E )⊗n into an algebra [Leb13].

Proposition 3.1.19. [BZBJ18a] Let Σ(P ) be a surface determined by a gluing pattern P and
let E = Repq(G) for a reductive algebraic Lie group G. Then AΣ(P ) is isomorphic to the
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Figure 3.4: The multiplication map for O(E )⊗4 where the crossing of strands O(E )(i) and
O(E )(j) is given by the braiding Ki,j

algebra
aP = O(E )(1) ⊗ · · · ⊗ O(E )(n),

where O(E )(i) is the reflection equation algebra of Uq(g), and the crossing morphisms Ki,j :
O(E )(j)⊗O(E )(i) → O(E )(i)⊗O(E )(j) where i, j are consecutive are given in Definition 3.1.18.

3.2 The Factorisation Homology of the
Four–Punctured Sphere and Punctured Torus over
Uq(sl2)

Using Proposition 3.1.12 we have that the factorisation homology of the four–punctured sphere
and punctured torus over Uq(sl2) is AΣ–modRepq(G) where AΣ is the algebra object of the
four–punctured sphere Σ0,4 and punctured torus Σ1,1 respectively. We shall use Proposition
3.1.19 to obtain presentations of AΣ0,4 and AΣ1,1 . In order to do this, we require a presentation
of the reflection equation algebra O(Repq(SL2)) and a description of Ki,j in each case.

The R–matrix for Uq(sl2) when evaluating on the standard representation of Uq(sl2) is given
by

R :=


R11

11 R12
11 R21

11 R22
11

R11
12 R12

12 R21
12 R22

12

R11
21 R12

21 R21
21 R22

21

R11
22 R12

22 R21
22 R22

22

 := q
1
2


q 0 0 0
0 1 (q − q−1) 0
0 0 1 0
0 0 0 q

 .

We shall also require

R̃ := (Id⊗S)(R) = q−
1
2


q−1 0 0 0
0 1 q−2(q−1 − q) 0
0 0 1 0
0 0 0 q−1

 .

where S is the antipode of Uq(sl2).

Definition 3.2.1. [BJ18] The reflection equation algebra O(Repq(SL2)) is generated by the
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four elements

A =
(
a1

1 a1
2

a2
1 a2

2

)
which satisfy the following:

1. The quantum determinant detq(A) := a1
1a

2
2 − q2a1

2a
2
1 = 1 , and

2. The reflection equation alma
p
r = R̃opmk(R−1)klijRsjuvRwuor aisavw where i, j, k, l, m, o, p, r, s,

v, w ∈ { 0, 1 }†.

Or more explicitly the reflection equation algebra O(Repq(SL2)) has generators a1
1, a

1
2, a

2
1, a

2
2

and relations

a1
2a

1
1 = a1

1a
1
2 +

(
1− q−2) a1

2a
2
2, (3.1)

a2
1a

1
1 = a1

1a
2
1 − q−2 (1− q−2) a2

1a
2
2, (3.2)

a2
1a

1
2 = a1

2a
2
1 +

(
1− q−2) (a1

1a
2
2 − a2

2a
2
2
)
, (3.3)

a2
2a

1
1 = a1

1a
2
2, (3.4)

a2
2a

1
2 = q2a1

2a
2
2, (3.5)

a2
2a

2
1 = q−2a2

1a
2
2, (3.6)

a1
1a

2
2 = 1 + q2a1

2a
2
1. (3.7)

Definition 3.2.2. The braiding on Repq(SL2) for positively unlinked handles Hi and Hj is
the map

Ki,j : O(Repq(SL2))(i) ⊗ O(Repq(SL2))(j) → O(Repq(SL2))(j) ⊗ O(Repq(SL2))(i) :

Ki,j(yef ⊗ x
g
h) = R̃igfjR

ej
klR

mn
ih

(
R−1)ko

pn
xlo ⊗ ypm

where xgh and yef are generators of Rep(i)
q (SL2) and Rep(j)

q (SL2) respectively.

Corollary 3.2.3. The factorisation homology of the four–punctured sphere with coefficients in
Repq(SL2) is

∫
Σ0,4

Repq(SL2) ' AΣ0,4–modRepq(SL2) where AΣ0,4 is an algebra with twelve
generators organised into three matrices

A :=
(
a1

1 a1
2

a2
1 a2

2

)
, B :=

(
b11 b12

b21 b22

)
, C :=

(
c11 c12

c21 c22

)

subject to the relations

x1
1x

2
2 = 1 + q2x1

2x
2
1 (determinant relation) (3.8)

ylmx
p
r = R̃opmk(R−1)klijRsj)uvRwuor xisyvw (reflection equation) (3.9)

yefx
g
h = R̃igfjR

ej
klR

mn
ih (R−1)kopnxloypm (crossing relation) (3.10)

†The reflection equation algebra is usually given as R21A1RA2 = A2R21A1R where A1 := A⊗I, A2 := I⊗A,
and R21 := τRτ , for example in [DM03] and [GPS08]. Our version is the tensor version rearranged using the
relations

∑
(R−1)ij

kl
Rkl

mn = δi
mδ

j
n and

∑
R̃ij

kl
Rml

in = δm
k δ

n
j .
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where x ∈ { a, b, c }, e, f, g, h, i, j, k, l,m, n, o, p ∈ { 0, 1 },

R = q
1
2


q 0 0 0
0 1 (q − q−1) 0
0 0 1 0
0 0 0 q


is the standard quantum R–matrix for Uq(sl2) when evaluated on the standard representation
of Uq(sl2) and

R̃ = q−
1
2


q−1 0 0 0
0 1 q−2(q−1 − q) 0
0 0 1 0
0 0 0 q−1

 .

Definition 3.2.4. The braiding on Repq(SL2) for positively linked handles Hi and Hj is the
map

Ki,j : Rep(i)
q (SL2)⊗Rep(j)

q (SL2)→ Rep(j)
q (SL2)⊗Rep(i)

q (SL2) :

Ki,j(ygh ⊗ x
e
f ) = R̃iehjR

gj
klR

mn
if

(
R−1)ko

pn
xlo ⊗ ypm

where xgh and yef are generators of Rep(i)
q (SL2) and Rep(j)

q (SL2) respectively.

Corollary 3.2.5. The factorisation homology of the punctured torus with coefficients in Uq(sl2)
is
∫

Σ1,1
Repq(SL2) ' AΣ1,1–modRepq(SL2) where AΣ1,1 is an algebra with eight generators or-

ganised into two matrices

A :=
(
a1

1 a1
2

a2
1 a2

2

)
, B :=

(
b11 b12

b21 b22

)
subject to the relations

x1
1x

2
2 = 1 + q2x1

2x
2
1 (determinant relation) (3.11)

ylmx
p
r = R̃opmk(R−1)klijRsjuvRwuor xisyvw (reflection equation) (3.12)

yghx
e
f = R̃iehjR

gj
klR

mn
if

(
R−1)ko

pn
xlo ⊗ ypm (crossing relation) (3.13)

where x ∈ { a, b, c }, e, f, g, h, i, j, k, l,m, n, o, p ∈ { 0, 1 } and the R–matrices are the same as in
Corollary 3.2.3.

3.2.1 Poincaré–Birkhoff–Witt bases for AΣ0,4 and AΣ1,1

We now construct a PBW basis for O(Repq(SL2)) which we shall use to construct PBW bases
for AΣ0,4 and AΣ1,1 .

Proposition 3.2.6. The monomials

{
(a1

1)α(a1
2)β(a2

1)γ(a2
2)δ
∣∣ α, β, γ, δ ∈ N0, β or γ = 0

}
are a PBW basis for the reflection equation algebra O(Repq(SL2)) with respect to the ordering
a1

1 < a1
2 < a2

1 < a2
2.
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Proof. The relations defining O(Repq(SL2)) can be re-expressed as the term rewriting system:

σ1211 : a1
2a

1
1 7→ a1

1a
1
2 +

(
1− q−2) a1

2a
2
2,

σ2111 : a2
1a

1
1 7→ a1

1a
2
1 − q−2 (1− q−2) a2

1a
2
2,

σ2112 : a2
1a

1
2 7→ a1

2a
2
1 +

(
1− q−2) (a1

1a
2
2 − a2

2a
2
2
)
,

σ2211 : a2
2a

1
1 7→ a1

1a
2
2,

σ2212 : a2
2a

1
2 7→ q2a1

2a
2
2,

σ2221 : a2
2a

2
1 7→ q−2a2

1a
2
2,

σ1221 : a1
2a

2
1 7→ q−2 + q−2a1

1a
2
2.

The monomials listed in the statement of the result are the reduced monomials with respect
to this term rewriting system; furthermore, there are no inclusion ambiguities, and the overlap
ambiguities are

(σ2112, σ1211, a
2
1, a

1
2, a

1
1), (σ2212, σ1211, a

2
2, a

1
2, a

1
1),

(σ2221, σ2111, a
2
2, a

2
1, a

1
1), (σ2221, σ2112, a

2
2, a

2
1, a

1
2),

(σ2112, σ1221, a
2
1, a

1
2, a

2
1), (σ2212, σ1221, a

2
2, a

1
2, a

2
1),

(σ1221, σ2111, a
1
2, a

2
1, a

1
1), (σ1221, σ2112, a

1
2, a

2
1, a

1
2).

We shall order O(Repq(SL2)) with respect to the reduced degree where we give the gen-
erators the ordering a1

1 < a1
2 < a2

1 < a2
2. This ordering is compatible with the given term

rewriting systems and the rewriting will terminate, so if the ambiguities are resolvable then we
can apply the Diamond lemma, and we are done. It can be checked by direct calculation that
the ambiguities are resolvable†. For example for the first ambiguity we have that both

(
a2

1a
1
2
)
a1

1
(σ2112)= a1

2
(
a2

1a
1
1
)

+
(
1− q−2) (a1

1a
2
2a

1
1 −

(
a2

2
)2
a1

1

)
(σ2111, σ2211)=

(
a1

2a
1
1
)
a2

1 − q−2 (1− q−2) a1
2a

2
1a

2
2

+
(
1− q−2) ((a1

1
)2
a2

2 − a1
1
(
a2

2
)2)

(σ1211)= a1
1a

1
2a

2
1 +

(
1− q−2) a1

2
(
a2

2a
2
1
)
− q−2 (1− q−2) a1

2a
2
1a

2
2

+
(
1− q−2) ((a1

1
)2
a2

2 − a1
1
(
a2

2
)2)

(σ2221)= a1
1a

1
2a

2
1 + q−2 (1− q−2) a1

2a
2
1a

2
2 − q−2 (1− q−2) a1

2a
2
1a

2
2

+
(
1− q−2) ((a1

1
)2
a2

2 − a1
1
(
a2

2
)2)

= a1
1a

1
2a

2
1 +

(
1− q−2) ((a1

1
)2
a2

2 − a1
1
(
a2

2
)2)

and

a2
1
(
a1

2a
1
1
) (σ1211)=

(
a2

1a
1
1
)
a1

2 +
(
1− q−2) a2

1a
1
2a

2
2

(σ2111)= a1
1a

2
1a

1
2 − q−2 (1− q−2) a2

1
(
a2

2a
1
2
)

+
(
1− q−2) a2

1a
1
2a

2
2

(σ2212)= a1
1a

2
1a

1
2 −

(
1− q−2) a2

1a
1
2a

2
2 +

(
1− q−2) a2

1a
1
2a

2
2

†We used the computer algebra system MAGMA to check this and similar computations throughout this
chapter.
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= a1
1
(
a2

1a
1
2
)

(σ2112)= a1
1a

1
2a

2
1 +

(
1− q−2) ((a1

1
)2
a2

2 − a1
1
(
a2

2
)2)

give the same result, so the first ambiguity is resolvable.

Proposition 3.2.7. A PBW basis for AΣ0,4 is

{
(a1

1)α1(a1
2)β1(a2

1)γ1(a2
2)δ1(b11)α2(b12)β2(b21)γ2(b22)δ2(c11)α3(c12)β3(c21)γ3(c22)δ3

∣∣
| αi, βi, γi ∈ N0, βi or γi = 0 } .

Proof. By Proposition 3.2.6 we have a PBW basis

{
(a1

1)α(a1
2)β(a2

1)γ(a2
2)δ
∣∣ α, β, γ, δ ∈ N0, β or γ = 0

}
for the reflection equation algebra O(Repq(SL2)). The algebra AΣ0,4 is the tensor product of
three copies of O(Repq(SL2)); hence,

{
(a1

1)α1(a1
2)β1(a2

1)γ1(a2
2)δ1(b11)α2(b12)β2(b21)γ2(b22)δ2(c11)α3(c12)β3(c21)γ3(c22)δ3

∣∣
| αi, βi, γi ∈ N0, βi or γi = 0 } .

is a PBW basis for it.

Proposition 3.2.8. A PBW basis for AΣ1,1 is

{
(a1

1)α1(a1
2)β1(a2

1)γ1(a2
2)δ1(b11)α2(b12)β2(b21)γ2(b22)δ2

∣∣ αi, βi, γi ∈ N0, βi or γi = 0
}
.

Proof. Similar to above.

We will need an alternative PBW basis for AΣ0,4 in Section 3.4, so we shall now give an
alternative basis for O(Repq(SL2)), and then use it to give the alternative PBW basis for AΣ0,4 .

Proposition 3.2.9. The monomials

{
(a2

1)α(a1
1)β(a2

2)γ(a1
2)δ
∣∣ α, β, γ, δ ∈ N0, β or γ = 0

}
are a PBW basis for the reflection equation algebra O(Repq(SL2)) with respect to the ordering
a2

1 < a1
1 < a2

2 < a1
2.

Proof. A term rewriting system for O(Repq(SL2)) is

τ1211 : a1
2a

1
1 7→ a1

1a
1
2 + q−2(1− q−2)a2

2a
1
2,

τ1121 : a1
1a

2
1 7→ a2

1a
1
1 − q−2(1− q−2)a2

1a
2
2,

τ1221 : a1
2a

2
1 7→ q−2a2

1a
1
2 − q−2(1− q−2)(1− (a2

2)2),

τ2211 : a2
2a

1
1 7→ a1

1a
2
2,

τ1222 : a1
2a

2
2 7→ q−2a2

2a
1
2,

τ2221 : a2
2a

2
1 7→ q−2a2

1a
2
2,

τ1122 : a1
1a

2
2 7→ q−2 + a2

1a
1
2 + (1− q−2)(a2

2)2.
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The monomials given in the statement of the result are the reduced monomials with respect
to this term rewriting system; furthermore, there are no inclusion ambiguities, and the overlap
ambiguities are

(τ1211, τ1121, a
1
2, a

1
1, a

2
1), (τ2211, τ1121, a

2
2, a

1
1, a

2
1),

(τ1222, τ2211, a
1
2, a

2
2, a

1
1), (τ1222, τ2221, a

1
2, a

2
2, a

2
1),

(τ2211, τ1122, a
2
2, a

1
1, a

2
2), (τ1211, τ1122, a

1
2, a

1
1, a

2
2),

(τ1122, τ2211, a
1
1, a

2
2, a

1
1), (τ1122, τ2221, a

1
1, a

2
2, a

2
1).

We shall order O(Repq(SL2)) with respect to the reduced degree where we give the gen-
erators the ordering a2

1 < a1
1 < a2

2 < a1
2. This ordering is compatible with the given term

rewriting systems and the rewriting will terminate, so if the ambiguities are resolvable then we
can apply the Diamond lemma, and we are done. It can be checked by direct calculation that
the ambiguities are resolvable.

Corollary 3.2.10. An alternative PBW basis for AΣ0,4 is

{
(a1

1)α1(a1
2)β1(a2

1)γ1(a2
2)δ1(b21)α2(b11)β2(b22)γ2(b12)δ2(c11)α3(c12)β3(c21)γ3(c22)δ3

∣∣
| αi, βi, γi ∈ N0, βi or γi = 0 } .

Proof. The same as Proposition 3.2.7 expect we use the PBW basis

{
(b21)α(b11)β(b22)γ(b12)δ

∣∣ α, β, γ, δ ∈ N0, β or γ = 0
}

from Proposition 3.2.9 for the second copy of O(Repq(SL2)) in AΣ0,4 = O(Repq(SL2))3⊗.

3.3 The Algebra of Invariants and Character Varieties

Given a surface Σ there are several invariants of Σ based on the representations of the its
fundamental group π1(Σ).

Definition 3.3.1. The representation variety RG(Σ) is the affine variety RG(Σ) = { ρ : π1(Σ)→ G }
of homomorphisms from the fundamental group of Σ to the reductive algebraic group G.

Definition 3.3.2. The character stack ChG(Σ) is the quotient RG(Σ)/G of the representation
variety of the surface RG(Σ) by the the group G acting upon it by conjugation.

Definition 3.3.3. The character variety ChG(Σ) is the affine categorical quotient RG(Σ)//G
of the representation variety of the surface RG(Σ) by the the group G acting upon it by
conjugation.

The character stack ChG(Σ) is intimately related to the factorisation homology of Σ with
coefficients in the category Rep(G) of representations of G:

Theorem 3.3.4. [BZBJ18a] If Σ is a surface, then we have an equivalence of categories

QCoh(ChG(Σ)) '
∫

Σ
Rep(G)
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between the category of quasi-coherent sheaves on the character stack ChG(Σ) and the factori-
sation homology of the surface Σ with coefficients in Rep(G).

Proposition 3.3.5. [BZBJ18a] Let Σ be a punctured surface. The algebra object AΣ of∫
Σ Repq(G) is a quantisation of the character stack ChG(Σ).

Remark 3.3.6. The character stack ChG(Σ) is often called the character variety. Another name
for the character variety ChG(Σ) is the affine character variety.

We now turn our attention to quantising the character variety ChG(Σ).

Definition 3.3.7. The algebra of invariants AΣ of the punctured surface Σ with respect to the
quantum group Uq(()g) is (End(AΣ))Uq(()g), the algebra of invariants of AΣ under the action of
Uq(()g).

To quantise ChG(Σ) we deform the Poisson algebra of functions on ChG(Σ), and a suitable
deformation of this Poisson algebra is given by AΣ:

Proposition 3.3.8 [BZBJ18a]. Let Σ be a punctured surface. The the algebra of invariants
AΣ of

∫
Σ Repq(G) is a quantisation of the character variety ChG(Σ).

Example 3.3.9. From Section 2.3, we recall that the algebra object AΣ0,4 is generated by
twelve generators (

x1
1 x1

2

x2
1 x2

2

)
for x ∈ { a, b, c } and where xij ∈ V ∗⊗V . The quantum group Uq(sl2) is generated by E,F,K±

whose images in the standard 2–dimensional representation are

E =
(

0 1
0 0

)
; F =

(
0 0
1 0

)
; K =

(
q 0
0 q−1

)
.

It is a Hopf algebra with coproduct ∆ defined by

∆(E) = E ⊗ 1 +K−1 ⊗ E, ∆(F ) = F ⊗K + 1⊗ F, ∆(K) = K ⊗K;

antipode S defined by

S(E) = KE, S(F ) = −FK−1, S(K) = K−1;

and counit ε defined by ε(E) = ε(F ) = 0, ε(K) = 1. The vector space V with basis { v1, v2 }
has an Uq(sl2) action on it defined by

K · v1 = qv1; K · v2 = q−1v2;

E · v1 = 0; E · v2 = v1;

F · v1 = v2; F · v2 = 0.

The action on the dual V ∗ is defined by X · u∗(w) = u∗(S(X)w) where X ∈ Uq(sl2), u∗ ∈
V ∗, w ∈ V , so on the basis { v1, v2 } is given by

K · v1 = qv1; K · v2 = q−1v2;
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F · v1 = −q−1v2; F · v2 = 0;

E · v1 = 0; E · v2 = −qv1

The action of Uq(sl2) on V ∗⊗V is defined via the coproduct; hence, it acts on AΣ0,4 as follows:

K · a1
1 = a1

1; K · a1
2 = q2a1

2; K · a2
1 = q−2a2

1; K · a2
2 = a2

2;

E · a1
1 = q−1a1

2; E · a1
2 = 0; E · a2

1 = q(a2
2 − a1

1); E · a2
2 = −qa1

2;

F · a1
1 = −q−2a2

1; F · a1
2 = a1

1 − a2
2; F · a2

1 = 0; F · a2
2 = a2

1.

An element x ∈ AΣ0,4 is an invariant of the Uq(sl2)–action if h ·v = ε(h)v i.e. E ·v = F ·v = 0
and K · v = v. So, the algebra of invariants quantisation of the SL2–quantum character variety
of Σ0,4 is given by the elements of AΣ0,4 which are invariant under this action. We shall give a
presentation for AΣ0,4 in Section 3.5.

3.4 Hilbert Series Calculations

In this section we shall compute the graded character of the algebra objects AΣ0,4 and AΣ1,1 ,
and then use these to compute the Hilbert series of the algebras of invariants AΣ0,4 and AΣ1,1

which we will need in the proof of presentation of AΣ0,4 and AΣ1,1 in the next section. A Hilbert
series encodes the dimensions of the graded parts of an algebra.

Definition 3.4.1. The associated graded algebra of the Z+ filtered algebra A =
⋃
n∈Z+

A(n) is

G (A) =
⊕
n∈Z+

A[n] where A[n] =

A(0) for n = 0
A(n)�A(n− 1) for n > 0.

Definition 3.4.2. The Hilbert series of the Z+ graded vector space A =
⊕

n∈Z+
A[n] is the

formal power series
hA(t) =

∑
dim(A[n])tn.

The Hilbert series of a Z+ graded algebra A is the Hilbert series of its underlying Z+ graded
vector space, and the Hilbert series of the Z+ filtered algebra A =

⋃
n∈Z+

A(n) is the Hilbert
series of the associated graded algebra G (A).

A graded character of a filtered/graded representation encodes the dimensions of graded
parts and weight spaces simultaneously.

Definition 3.4.3. Let V be a vector space acted on by Uq(g) and let V k denote the qk–weight
space of V where k ∈ Z. The character of V is the formal power series

chV (u) =
∑
k∈Λ

dim
(
V k
)
uk.

Definition 3.4.4. Let V =
⊕

n V [n] be a graded vector space acted on by Uq(g). The graded
character of V is

hV (u, t) :=
∑
n

chV [n](u)tn =
∑
n,k

dim
(
V [n]k

)
uktn,

where V [n]k is the qk–weight space of V [n]. If V is filtered rather than graded the graded
character of V hV (u, t) is hG (V )(u, t), the graded character of associated graded vector space
G (V ).
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Let Σ = Σ0,4 or Σ1,1. Both AΣ and its subalgebra AΣ have filtrations by degree:

AΣ =
⋃
n∈Z+

A(n); AΣ =
⋃
n∈Z+

A (n)

where A(n) and A (n) are the span of monomials in AΣ and AΣ respectively with at most n
generators.

Remark 3.4.5. Unless otherwise stated, Hilbert series will always assume grading by degree,
and the action of Uq(sl2) will always be that stated in Example 3.3.9.

As AΣ is the part of AΣ with weight 1 = q0 under the action of Uq(sl2), the terms of the
graded character hAΣ(u, v) where k = 0 give the Hilbert series hAΣ(t); hence, we shall:

I. Compute the graded character of Oq(Repq(SL2)) which we use to

II. Compute the graded character of AΣ, and then

III. Extract the terms of the graded character which give the Hilbert series of AΣ.

3.4.1 The Graded Character of the Algebra Objects AΣ0,4 and AΣ1,1

Proposition 3.4.6. The graded character of Oq(Repq(SL2)) is

hOq (u, t) = (1 + t)
(1− t)(1− u2t)(1− u−2t) .

Proof. Recall from Proposition 3.2.6 that Oq(Repq(SL2)) has basis

{
(a1

1)α(a1
2)β(a2

1)γ(a2
2)δ
∣∣ α, β, γ, δ ∈ N0; β or γ = 0

}
.

We shall denoteXα,β,γ,δ := (a1
1)α(a1

2)β(a2
1)γ(a2

2)δ. The nth graded part Oq[n] :=
(
Oq(Repq(SL2))

)
[n]

has basis
{Xα,β,γ,δ | α, β, γ, δ ∈ N0; β or γ = 0; α+ β + γ + δ = n } .

We can see from Example 3.3.9 that a1
1, a

1
2, a

2
1, a

2
2 have weights 1, q2, q−2, 1 respectively, so

K ·Xα,β,γ,δ = K ·
(
(a1

1)α(a1
2)β(a2

1)γ(a2
2)δ
)

= q2β−2γ(a1
1)α(a1

2)β(a2
1)γ(a2

2)δ = q2(β−γ)Xα,β,γ,δ,

and Xα,β,γ,δ has weight q2(β−γ). This means that Oq[n]k, the qk weight space of Oq[n], has
basis

{Xα,β,γ,δ | α, β, γ, δ ∈ N0; β or γ = 0; α+ β + γ + δ = n; 2(β − γ) = k } .

If k is odd the final condition is never satisfied, and thus Oq[n]k = ∅. If k = 2m for m ≥ 0 then
we get the basis

{Xα,β,γ,δ | α, β, γ, δ ∈ N0; β or γ = 0; α+ β + γ + δ = n; 2(β − γ) = 2m }

= {Xα,β,0,δ | α, β, γ, δ ∈ N0; α+ β + δ = n; β = m }

as β − γ ≥ 0 and β or γ = 0 implies γ = 0

= {Xα,m,0,δ | α, δ ∈ N0; α+ δ = n−m } .
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which is empty if m > n and has n−m+ 1 elements otherwise. Finally, if k = −2m for m > 0
then we get the basis

{Xα,β,γ,δ | α, β, γ, δ ∈ N0; β or γ = 0; α+ β + γ + δ = n; 2(β − γ) = −2m }

= {Xα,0,γ,δ | α, β, γ, δ ∈ N0; α+ γ + δ = n; γ = m }

as β − γ ≤ 0 and β or γ = 0 implies β = 0

= {Xα,0,m,δ | α, δ ∈ N0; α+ δ = n−m } .

which is empty if m > n and has n−m+ 1 elements otherwise. Hence,

dim Oq[n]k =


n−m+ 1 if k = 2m for some m ≥ 0

n−m+ 1 if k = −2m for some m ≥ 1

0 otherwise,

so the character of Oq[n] is

hOq [n](u) =
(

n∑
m=0

(n−m+ 1)u2m

)
+
(

n∑
m=1

(n−m+ 1)u−2m

)

= u−2n(u2+2n − 1)2

(u2 − 1)2 ,

and the graded character of Oq is

hOq (u, t) =
∞∑
n=0

u−2n(u2+2n − 1)2

(u2 − 1)2 tn = (1 + t)
(1− t)(1− u2t)(1− u−2t) .

We note that if V =
⊕

n V (n) and W =
⊕

nW (n) are two graded vector spaces acted on
by Uq(g) then hV⊗W (u, t) = hV (u, t) · hW (u, t).

Corollary 3.4.7. The graded character of AΣ0,4 is

hAΣ0,4
(u, t) =

(
(1 + t)

(1− t)(1− u2t)(1− u−2t)

)3
.

Proof. We have from Proposition 3.1.19 that AΣ0,4
∼= Oq ⊗ Oq ⊗ Oq; hence,

hAΣ0,4
(u, t) = hOq (u, t) · hOq (u, t) · hOq (u, t) =

(
(1 + t)

(1− t)(1− u2t)(1− u−2t)

)3
.

Corollary 3.4.8. The graded character of AΣ1,1 is

hAΣ1,1
(u, t) =

(
(1 + t)

(1− t)(1− u2t)(1− u−2t)

)2
.
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Proof. We have from Proposition 3.1.19 that AΣ1,1
∼= Oq ⊗ Oq; hence,

hAΣ1,1
(u, t) = hOq (u, t) · hOq (u, t) =

(
(1 + t)

(1− t)(1− u2t)(1− u−2t)

)2
.

3.4.2 The Hilbert Series of AΣ0,4 and AΣ1,1

Proposition 3.4.9. Let Σ be any punctured surface and AΣ be the algebra object of
∫

Σ Repq(SL2).
The graded character of AΣ is

hAΣ(u, t) =
∑
n,k

mn,k
uk+1 − uk−1

u− u−1 tn

for mn,k ∈ Z+.

Proof. As integrable representations of Uq(sl2) are semisimple, any finite–dimensional repre-
sentation V of Uq(sl2) when q is generic can be decomposed into V =

⊕
k∈Z+

V [k]mk where
mk ∈ Z+ and V [k] is an irreducible representation with character given by the Weyl character
formula:

chV (k) = uk + uk−2 + · · ·+ u−k+2 + u−k = uk+1 − u−k−1

u− u−1 .

Applying this to V = AΣ[n] the degree n part of G (AΣ) gives

hAΣ(u, t) = hG (AΣ)(u, t)

=
∑
n

chV [n](u)tn

=
∑
n

ch⊕
k
V [n](k)mn,k (u)tn

=
∑
n,k

mn,k chV [n](k)(u)tn

=
∑
n,k

mn,k
uk+1 − u−k−1

u− u−1 tn.

Corollary 3.4.10. Let AΣ be the algebra object and AΣ be algebra of invariants of the factori-
sation homology of

∫
Σ Repq(SL2) for a punctured surface Σ. The Hilbert series hAΣ(t) is given

by the u coefficient of (u− u−1) · hAΣ(u, t).

Proof. From Proposition 3.4.9 we have that

hAΣ(u, t) =
∑
n,k

mn,k
uk+1 − uk−1

u− u−1 tn

=⇒ (u− u−1)hAΣ(u, t) =
∑
n,k

mn,k(uk+1 − uk−1)tn

where
hAΣ(t) =

∑
n

mn,0t
n,
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so hAΣ(t) is given by the u coefficient of (u− u−1) · hAΣ(u, t).

Proposition 3.4.11. The Hilbert series of AΣ0,4 is

hAΣ0,4
(t) = t2 − t+ 1

(1− t)6(1 + t)2 .

Proof. From Corollary 3.4.7 we have that

hAΣ0,4
(u, t) =

(
(1 + t)

(1− t)(1− u2t)(1− u−2t)

)3

= 1
(1− t)6

(
t3

(u2 − t)3 + 3t2
(1− t2)(u2 − t)2

+ 3(t2 + 1)t
(1− t2)2(u2 − t) + 1

(1− tu2)3

+ 3t2
(1− t2)(1− tu2)2 + 3t2(t2 + 1)

(1− t2)2(1− tu2)

)

where

1
(1− u2t) =

∞∑
i=0

(u2t)i = 1 + u2t+ u4t2 + . . .

1
(u2 − t) = u−2

∞∑
i=0

(u−2t)i = u−2 + u−4t+ . . .

so the u coefficient of (u− u−1) · hAΣ0,4
(u, t) is

1
(1− t)6

(
(1 − 3t) + 3t2(1− 2t)

(1− t2) + 3t2(1− t)(t2 + 1)
(1− t2)2

)
= t2 − t+ 1

(1− t)6(1 + t)2

which by Corollary 3.4.10 is the Hilbert series of AΣ0,4 .

Proposition 3.4.12. The Hilbert Series of A1,1 is

hAΣ1,1
= 1

(1− t)3(1 + t) .

Proof. From Corollary 3.4.8 we have that

hAΣ1,1
(u, t) =

(
(1 + t)

(1− t)(1− u2t)(1− u−2t)

)2

= (1 + t)2

(1− t)2(1− t2)2

(
2t2

(1− t2)(1− tu2) + t2

(u2 − t)2

+ 2t
(1− t2)(u2 − t) + 1

(1− tu2)2

)
,

so the u coefficient of (u− u−1)hAΣ1,1
(u, t) is

(1 + t)2

(1− t)2(1− t2)2

(
2t2(1− t)
(1− t2) + (1− 2t)

)
= 1

(1− t)3(1 + t)
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which by Corollary 3.4.10 is the Hilbert series of AΣ1,1 .

3.5 The Algebra of Invariants of the Four–Punctured Sphere
and the Punctured Torus

3.5.1 The Four–Punctured Sphere

We now turn to the first main result of this thesis: giving a presentation of the algebra of
invariants AΣ0,4 of

∫
Σ0,4

Repfd
q (SL2). As explained in Section 3.3, this algebra defines a SL2–

quantum character variety of Σ0,4.
Recall from Section 3.2 that the generators of AΣ0,4 , organised into matrices, are:

A :=
(
a1

1 a1
2

a2
1 a2

2

)
, B :=

(
b11 b12

b21 b22

)
, C :=

(
c11 c12

c21 c22

)
.

Note that the quantum traces Trq(A) = a1
1 + q−2a2

2, Trq(B) = b11 + q−2b22 and Trq(C) =
c11 + q−2c22 of these matrices are invariant under the action of the quantum group on End(AΣ),
and hence are contained in AΣ0,4 . Furthermore, the quantum trace trq(X) of any matrix
X =

∑N
i A

αiBβjCγi where αi, βi, γi ∈ N0 is also invariant under the action of the quantum
group, so must also be contained in AΣ0,4 . The quantum Cayley–Hamilton equation X2 =
Trq(X)X − q−2 detq(X) implies that trq(X) is a linear combinations of the traces Trq(A),
Trq(B), Trq(C), Trq(AB), Trq(AC), Trq(BC) and Trq(ABC). Therefore, these seven traces
generate all the invariants which are of the form trq(X). In this section we prove that these
seven traces in fact generate the entire algebra of invariants AΣ0,4 and state the relations these
traces satisfy.

Definition 3.5.1. Let B be the algebra with generators E,F,G, s, t, u, v subject to the rela-
tions:

FE = q2EF + (q2 − q−2)G+ (1− q2)(sv + tu), (3.14)

GE = q−2EG− q−2(q2 − q−2)F + (1− q−2)(su+ tv), (3.15)

GF = q2FG + (q2 − q−2)E + (1− q2)(st+ uv), (3.16)

EFG =


− E2 − q−4F 2 −G2 − q−4(s2 + t2 + u2 + v2)
+ (st+ uv)E + q−2(su+ tv)F + (sv + tu)G
− stuv + q−6(q2 + 1)2

(3.17)

and s, t, u, v are central.

Theorem 3.5.2. The map Φ′ : B → AΣ0,4 defined by:

E 7→ Trq(AB),

F 7→ Trq(AC),

G 7→ Trq(BC),

s 7→ Trq(A),

t 7→ Trq(B),

u 7→ Trq(C),

v 7→ Trq(ABC),
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is an isomorphism of algebras. We denote by Φ : B → O3⊗
q the map defined by the same

formulas.

Before proceeding with the proof of this theorem, we shall find a basis for the algebra B.
As the elements u, v, s and t are central, instead of considering B as an algebra over C with
seven generators, we can consider B as an algebra over the polynomial ring C[s, t, u, v]with
generators E,F,G, i.e. B = C[s, t, u, v]〈E,F,G〉†.

Proposition 3.5.3. A PBW–basis for G (B) over C[s, t, u, v] is

{
EnFmGl

∣∣ n or m or l = 0
}
.

Proof. A term rewriting system for G (B) is given by

σFE : FE 7→ q2EF + dG+ ea

σGF : GF 7→ q2FG+ dE + ec

σGE : GE 7→ q−2EG− q−2dF + fb

σEFnG : EFnG 7→ f(n)

where

a := sv + tu, b := su+ tv, c := st+ uv, d := (q2 − q−2), e := (1− q2), f := (1− q−2)

and f(n) is defined recursively as follows∗:

f(1) := −E2 − q−4F 2 −G2 + cE + q−2bF + aG

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)

f(n) := q−2Ff(n− 1) + (q−4 − 1)GFn−1G+ (1− q−2)aFn−1G.

We shall use the above term rewriting system for G (B) and apply the Diamond Lemma. In
order to do this we must first show that all the ambiguities of the term rewriting system are
resolvable. The ambiguities are

1. (σGF , σFE , G, F,E),

2. (σFE , σEFnG, F, E, FnG),

3. (σGE , σEFnG, G,E, FnG),

4. (σEFnG, σGE , EFn, G,E),

5. (σEFnG, σGF , EFn, G, F ).

The first ambiguity (σGF , σFE , G, F,E) is resolvable by direct calculation:

GFE
σGF7−−−→ q2FGE + dE2 + ecE
σGE7−−−→ FEG− dF 2 + q2fbF + dE2 + ecE

†The algebra 〈E,F,G〉 denotes the subalgebra of B generated by E, F and G not the free algebra.
∗This recursion relation arises from applying σ−1

F E to EFnG; one could equally apply σ−1
GF which would give

an alternate term rewriting system.
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σFE7−−−→ q2EFG+ dG2 + eaG− dF 2 + q2fbF + dE2 + ecE

is equal to

GFE
σFE7−−−→ q2GEF + dG2 + eaG
σGE7−−−→ EGF − dF 2 + q2fbF + dG2 + eaG
σGF7−−−→ q2EFG+ dE2 + ecE − dF 2 + q2fbF + dG2 + eaG.

The second ambiguity (σFE , σEFnG, F, E, FnG) also follows directly:

FEFnG
σFE7−−−→ q2EFn+1G+ dGFnG+ eaFnG

σEFn+1G7−−−−−−→ Ff(n)− dGFnG+ (q2 − 1)aFnG+ dGFnG+ eaFnG

= Ff(n)

is equal to

FEFnG
σEFnG7−−−−−→ Ff(n).

For the remainder of the ambiguities we proceed by induction on n. For the third ambiguity
(σGE , σEFnG, G,E, FnG) one direction is given by:

GEFnG
σGE7−−−→ q−2EGFnG− q−2dFn+1G+ fbFnG
σGF7−−−→ EFGFn−1G+ q−2dE2Fn−1G+ q−2ecEFn−1G

− q−2dFn+1G+ fbFnG

σEFG7−−−−→
(
− E2 − q−4F 2 −G2 + cE + q−2bF + aG

− q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2
)
Fn−1G

+ (1− q−4)E2Fn−1G+ (q−2 − 1)cEFn−1G− q−2dFn+1G+ fbFnG

=
(
− q−4E2 − F 2 −G2 + q−2cE + bF + aG

− q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2
)
Fn−1G for all n ≥ 1 (†)

σ2
EFn−1G7−−−−−−→

(
− F 2 −G2 + bF + aG− q−4(s2 + t2 + u2 + v2)− stuv

+ q−6(q2 + 1)2
)
Fn−1G− q−4Ef(n− 1) + q−2cf(n− 1) when n 6= 1. (‡)

This equals the other direction when n = 1:

GEFG
σEFG7−−−−→ −GE2 − q−4GF 2 −G3 + cGE + q−2bGF + aG2

− q−4(s2 + t2 + u2 + v2)G− stuvG+ q−6(q2 + 1)2G

σ3
GE7−−−→ −q−4E2G+ q−4dEF − q−2fbE + q−2dFE − fbE − q−4GF 2 −G3

+ q−2cEG− q−2dcF + fbc+ q−2bGF + aG2

+
(
−q−4(s2 + t2 + u2 + v2)− stuvG+ q−6(q2 + 1)2)G

σ3
GF7−−−→ −q−4E2G+ q−4dEF − q−2fbE + q−2dFE − fbE

− F 2G− q−2dFE − q−2ecF − q−4dEF − q−4ecF −G3
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+ q−2cEG− q−2dcF + fbc+ bFG+ q−2dbE + q−2ebc+ aG2

+
(
−q−4(s2 + t2 + u2 + v2)− stuvG+ q−6(q2 + 1)2)G

=
(
− q−4E2 − F 2 −G2 + q−2cE + bF + aG

− q−4(s2 + t2 + u2 + v2)− stuvG+ q−6(q2 + 1)2
)
G

= (†)

And in the general case:

GEFnG
EFnG7−−−−→ q−2GFf(n− 1) + (q−4 − 1)G2Fn−1G+ (1− q−2)aGFn−1G
σGF7−−−→ FGf(n− 1) + q−2dEf(n− 1) + q−2ecf(n− 1)

+ (q−4 − 1)G2Fn−1G+ (1− q−2)aGFn−1G

7−→ q−2FEGFn−1G− q−2dFn+1G+ fbFnG

+ q−2dEf(n− 1) + q−2ecf(n− 1) + (q−4 − 1)G2Fn−1G

+ (1− q−2)aGFn−1G by the induction assumption
σFE7−−−→ EFGFn−1G+ q−2dG2Fn−1G+ q−2eaGFn−1G− q−2dFn+1G

+ fbFnG+ q−2dEf(n− 1) + q−2ecf(n− 1) + (q−4 − 1)G2Fn−1G

+ (1− q−2)aGFn−1G

σEFG7−−−−→
(
− E2 − q−4F 2 −G2 + cE + q−2bF + aG

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2) )Fn−1G

+ q−2dG2Fn−1G+ q−2eaGFn−1G− q−2dFn+1G+ fbFnG

+ q−2dEf(n− 1) + q−2ecf(n− 1) + (q−4 − 1)G2Fn−1G

+ (1− q−2)aGFn−1G

=
(
− E2 − F 2 −G2 + cE + bF + aG+

(
− q−4(s2 + t2 + u2 + v2)

− stuv + q−6(q2 + 1)2
))
Fn−1G+ q−2dEf(n− 1) + q−2ecf(n− 1)

σ2
EFn−1G7−−−−−−→

(
− F 2 −G2 + bF + aG+

(
− q−4(s2 + t2 + u2 + v2)

− stuv + q−6(q2 + 1)2
))
Fn−1G− q−4Ef(n− 1) + q−2cf(n− 1)

= (‡)

For the forth ambiguity (σEFnG, σGE , EFn, G,E), one direction is:

EFnGE
σGE7−−−→ q−2EFnEG− q−2dEFn+1 + fbEFn

σFE7−−−→ EFn−1(EFG+ q−2dG2 + q−2eaG− q−2dF 2 + fbF )
σEFG7−−−−→ EFn−1

(
− E2 − F 2 − q−4G2 + cE + bF + q−2aG

− q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2
)
.

This equals the other direction when n = 1:

EFGE
σEFG7−−−−→ −E3 − q−4F 2E −G2E + cE2 + q−2bFE + aGE
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+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)E

= E
(
−E2 + cE − q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)E

− q−4F 2E −G2E + q−2bFE + aGE

σ3
FE◦σ

3
GE7−−−−−−→ E

(
−E2 + cE − q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)

− EF 2 − q−2dGF − q−2eaF − q−4dFG− q−4eaF − q−4EG2 + q−4dFG

− q−2fbG+ q−2dGF − fbG+ bEF + q−2dbG+ q−2eab+ q−2aEG

− q−2daF + fab

= E
(
− E2 − F 2 − q−4G2 + cE + bF + q−2aG− q−4(s2 + t2 + u2 + v2)

− stuv + q−6(q2 + 1)2
)
.

And in the general case:

EFnGE
σEFnG7−−−−−→ q−2Ff(n− 1)E + (q−4 − 1)GFn−1GE + (1− q−2)aFn−1GE

7→ q−4FEFn−1EG− q−4dFEFn + q−2fbFEFn−1 + (q−4 − 1)GFn−1GE

+ (1− q−2)aFn−1GE by the induction assumption
σ2
FE7−−−→ EFn−1EFG+ q−2dEFn−1G2 + q−2eaEFn−1G+ q−4dGFn−1EG

+ q−4eaFn−1EG− q−4dFEFn + q−2fbFEFn−1 + (q−4 − 1)GFn−1GE

+ (1− q−2)aFn−1GE

σEFG7−−−−→ EFn−1
(
− E2 − q−4F 2 − q−4G2 + cE + q−2bF + q−2aG

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2) )

+ q−4dGFn−1EG+ q−4eaFn−1EG− q−4dFEFn + q−2fbFEFn−1

+ (q−4 − 1)GFn−1GE + (1− q−2)aFn−1GE

σ2
GE◦σ

2
FE7−−−−−−→ EFn−1

(
− E2 − F 2 − q−4G2 + cE + bF + q−2aG

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2) ).

For the final ambiguity (σEFnG, σGF , EFn, G, F ), one direction is:

EFnGF
σGF7−−−→ q2EFn+1G+ dEFnE + ecEFn

EFn+1G7−−−−−−→ Ff(n) + q2(q−4 − 1)GFnG+ q2(1− q−2)aFnG+ dEFnE

+ ecEFn.

When n = 1 this gives

EFGF 7→ −FE2 − q−4F 3 − FG2 + cFE + q−2bF 2 + aFG

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)F

+ q2(q−4 − 1)GFG+ q2(1− q−2)aFG+ dEFE + ecEF

σ3
FE7−−−→ −E2F − q−2dEG− q−2eaE − dGE − eaE − q−4F 3 − FG2 + cEF
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+ dcG+ eac+ q−2bF 2 + q2aFG

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)F + q2(q−4 − 1)GFG

σGE◦σGF7−−−−−−→ −E2F − q−2dEG− q−2eaE − q−2dEG+ q−2d2F − dfb

− eaE − q−4F 3 − FG2 + cEF + dcG+ eac+ q−2bF 2 + q2aFG

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)F − q2dFG2

− d2EG− decG

= −E2F + cEF − d2EG+ daE − q−4F 3 + q−2bF 2 − q4FG2 + q2aFG

+ q−2d2F − q2dcG− dfb+ eac

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)F.

This equals the other direction when n = 1:

EFGF
σEFG7−−−−→ −E2F − q−4F 3 −G2F + cEF + q−2bF 2 + aGF

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)F

σGE◦σ3
GF7−−−−−−→ −E2F − q−4F 3 − q4FG2 − q2dEG− q2ecG− q−2dEG

+ q−2d2F − dfb− ecG+ cEF + q−2bF 2 + q2aFG+ daE + eac

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)F

= −E2F + cEF − d2EG+ daE − q−4F 3 + q−2bF 2 − q4FG2 + q2aFG

+ q−2d2F − (1 + q2)ecG− dfb+ eac

+
(
−q−4(s2 + t2 + u2 + v2)− stuv + q−6(q2 + 1)2)F.

And in the general case:

EFnGF
σEFnG7−−−−−→ q−2Ff(n− 1)F + (q−4 − 1)GFn−1GF + (1− q−2)aFn−1GF

7→ FEFnG+ q−2dFEFn−1E + q−2ecFEFn−1 + (q−4 − 1)GFn−1GF

+ (1− q−2)aFn−1GF by the induction assumption
σ2
GF ◦σ

2
FE7−−−−−−→ FEFnG+ dEFnE + q−2d2GFn−1E + q−2deaFn−1E

+ ecEFn + q−2decGFn−1 + q−2e2acFn−1 + q2(q−4 − 1)GFnG

+ (q−4 − 1)dGFn−1E + (q−4 − 1)ecGFn−1 + q2(1− q−2)aFnG

+ (1− q−2)daFn−1E + (1− q−2)eacFn−1

= FEFnG+ dEFnE + ecEFn − dGFnG+ q2(1− q−2)aFnG
σEFnG7−−−−−→ Ff(n) + dEFnE + ecEFn − dGFnG+ q2(1− q−2)aFnG.

Hence, all ambiguities in the reduction system are resolvable. It remains to show that
the reduction algorithm eventually terminates. We proceed by induction on the degree of the
expression. As no rules apply to expressions of degree one, the reduction algorithm trivially
terminates. Consider an expression T ∈ C〈E,F,G〉 of degree n; it is a finite linear combination
of words in 〈E,F,G〉 and can be reduced in a finite number of steps using the reduction rules
σFE , σGE and σGF to a finite linear combination of words of the form EαiF βiGγi for some
αi, βi, γi ∈ N0 such that αi + βi + γi ≤ n: if each of these monomials is reducible in a finite
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number of reductions so is T . Either βi = 0 and the monomial EαiF βiGγi is reduced, or
the only reduction we can apply is σEFβiG which reduces the degree, so the result follows by
induction. As every expression can be reduced fully in a finite number of reductions and all
ambiguities are resolvable, the Diamond Lemma applies giving the result.

To conclude, a basis of B over C[s, t, u, v] is
{
EnFmGl

∣∣ n or m or l = 0
}

, so a basis of B

over C is
{
EnFmGlsatbucvd

∣∣ n or m or l = 0; a, b, c, d, n,m, l ∈ N0
}

. We now proceed to the
proof of our theorem.

Proof of Theorem 3.5.2. To check that Φ is a morphism of algebras one must check that the
images of relations 3.14-3.17 are satisfied inO⊗3

q , which is a long but straightforward calculation,
which we omit. As all quantum traces lie in AΣ0,4 , the codomain of Φ can be restricted to define
Φ′ . So to show Φ′ is an isomorphism of algebras it remains to show Φ′ is a bijection which will
be done by first proving Φ is injective and then proving that Φ′ is surjective.

The proof of injectivity of Φ uses a filtration on the codomain O⊗3
q .

Definition 3.5.4. We define a filtration on the algebra O⊗3
q =

⋃
i∈N0

Fi by defining the degree
of the generators as follows:

• Degree 0: a2
1, a2

2, c12, and c22;

• Degree 1: a1
1, c11;

• Degree 2: a1
2,c21, b11, b12, b21, and b22.

Definition 3.5.5. Let G(O⊗3
q ) =

⊕
n∈N0

Gn denote the associated graded algebra of O⊗3
q =

∪i∈N0Fi.

Lemma 3.5.6. The set

{
Φ(EεFnGmsαtβuγvδ)

∣∣ ε or m or n = 0;α, β, γ, δ, n,m, ε ∈ N0
}

is linearly independent in O⊗3
q , so the homomorphism Φ : B → O⊗3

q is injective.

Proof. Suppose the contrary that the set
{

Φ
(
EεFnGmsαtβsγtδ

) ∣∣ ε or m or n = 0; ε,m, n, α, β, γ, δ ∈ N0
}

is linearly dependent then for some finite indexing set I there exists scalars ci which are not all
zero such that ∑

i∈I
ciΦ(EεiFniGmisαitβiuγivδi) = 0 ∈ O⊗3

q . (3.18)

Map this to G(O⊗3
q ): ∑

i∈I
ciΦ(EεiFniGmisαitβiuγivδi) = 0 ∈ G(O⊗3

q ). (3.19)

As s, t, u and v are central in B, (3.19) can be rearranged to give∑
i∈I

ciΦ(sαiEεivδitβiFniuγiGmi) = 0. (3.20)

As G(O⊗3
q ) is graded, we can assume that all the terms in expression (3.20) are in the maximal

degree; we also know that

Φ(X) = Trq(AB) = a1
2b

2
1 ∈ G4,
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Φ(F ) = Trq(AC) = a1
2c

2
1 ∈ G4,

Φ(G) = Trq(BC) = b12c
2
1 ∈ G4,

Φ(s) = Trq(A) = a1
1 ∈ G1,

Φ(t) = Trq(B) = b11 + q−1b22 ∈ G2,

Φ(u) = Trq(C) = c11 ∈ G1,

Φ(v) = Trq(ABC) = a1
2b

2
2c

2
1 ∈ G6,

so expression (3.20) implies that:∑
i∈I,S(i)=N

ci(a1
1)αi(a1

2b
2
1)εi(a1

2b
2
2c

2
1)δi(b11 + b22)βi(a1

2c
2
1)ni(c11)γi(b12c21)mi = 0, (3.21)

where S(i) := αi+γi+ 4(εi+ni+mi+βi) + 6δi and N ∈ N0. The crossing relations (Corollary
3.2.3):

b11a
1
2 = a1

2b
1
1 ∈ G4, b21a

1
2 = q−2a1

2b
2
1 ∈ G4,

b22a
1
2 = a1

2b
2
2 ∈ G4, b22b

1
1 = b11b

2
2 ∈ G4,

c11b
1
2 = b12c

1
1 ∈ G3, c12b

2
2 = b22c

1
2 ∈ G2,

c21a
1
2 = q−2a1

2c
2
1 ∈ G2, c21b

1
1 = b11c

2
1 ∈ G4,

c21b
1
2 = q−2b12c

2
1 ∈ G4, c21b

2
2 = b22c

2
1 ∈ G4,

b22b
1
1 = b11b

2
2 ∈ G4, b22b

1
2 = q2b12b

2
2 ∈ G4,

c21c
1
1 = c11c

2
1 ∈ G3,

can be used to reorder the term in expression (3.21) to give

∑
i∈I,

S(i)=N

βi∑
k=0

ciq
Ai,k(a1

1)αi(a1
2)δi+εi+γi(b21)εi(b11)k(b22)βi−k+δi(b12)mi(c11)γi(c21)δi+ni+mi = 0, (3.22)

for some constants Ai,k ∈ Z.
Using the basis for AΣ0,4 given in Lemma 3.2.10, the expression (3.22) is linear combination

of distinct monomials which are in the basis of G(O⊗3), so all the coefficients must be zero.
This is a contradiction as we assumed that not all the ci were zero.

In order to prove surjectivity of Φ′ we shall give B a filtration.

Definition 3.5.7. We define a filtration on the algebra B by defining the degree of the gener-
ators as follows:

• Degree 1: s, t, u;

• Degree 2: E,F,G;

• Degree 3: v.

Lemma 3.5.8. The algebras B and AΣ0,4 have the same Hilbert series when B is given the
filtration defined directly above and AΣ0,4 the filtration by degree.

Proof. The Hilbert series of AΣ0,4 was computed in Section 3.4 to be 1−t+t2
(1−t)6(1+t)2 . As

{
EnFmGlsatbucvd

∣∣ n or m or l = 0; a, b, c, d, n,m, l ∈ N0
}
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is a basis of G (B), there is a grading preserving vector space isomorphism

G (A )→ 〈E,F,G〉 ⊗ C[s]⊗ C[t]⊗ C[u]⊗ C[v] :

EaF bGcsdteufvg 7→ (EaF bGc)⊗ sd ⊗ te ⊗ uf ⊗ vg

where 〈E,F,G〉 is the subalgebra of A generated by E,F,G; hence,

hA (t) = h〈E,F,G〉(t) · hC[s](t) · hC[t](t) · hC[u](t) · hC[v](t).

If x = s, t, u the algebra C[x] is the polynomial algebra graded by degree, so (C[x])[n] has basis
{xn }, and

hC[x](t) =
∞∑
n=0

(dim (C[x]) [n])tn =
∞∑
n=0

tn = 1
1− t .

The algebra C[v] is the polynomial algebra graded by 3 times the degree, so (C[x])[n] has basis{
x
n
3
}

if n ≡ 0 mod 3 and ∅ otherwise, and

hC[v](t) =
∞∑
n=0

(dim (C[x]) [n])tn =
∞∑
n=0

t3n = 1
1− t3 .

The algebra 〈E,F,G〉[k] has basis

{
EaF bGc

∣∣ a+ b+ c = n; a or b or c is 0
}

if k = 2n is even and is ∅ otherwise. Assume k is even so k = 2n. If n = 0 then the basis has
one element { 0 }. If n 6= 0 then the basis is

{
EaF bGc

∣∣ a+ b+ c = n; a or b or c is 0
}

=
{
EaF bGc

∣∣ a+ b+ c = n; one of a, b, c is 0
}

t
{
EaF bGc

∣∣ a+ b+ c = n; two of a, b, c is 0
}

=
{
EaF b

∣∣ a+ b = n; a, b 6= 0
}
t
{
F bGc

∣∣ b+ c = n; b, c 6= 0
}

t {EaGc | a+ c = n; a, c 6= 0 } t {En, Fn, Gn }

which has 3n elements. Hence, the Hilbert series of 〈E,F,G〉 is

h〈E,F,G〉(t) =
∞∑
n=0

(dim (〈E,F,G〉) [n])tn = 1 +
∞∑
n=1

3nt2n = 1 + 3t2
(1− t2)2 .

Thus

hAΣ0,4
(t) = h〈E,F,G〉(t) · hC[s](t) · hC[t](t) · hC[u](t) · hC[v](t)

=
(

1 + 3t2
(1− t2)2

)
1

(1− t)3(1− t3)

= 1− t+ t2

(1− t)6(1 + t)2 ,

which means that B and AΣ0,4 have the same Hilbert series.

The homomorphism Φ′ is filtered if we give B the filtration defined in Definition 3.5.7 and
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AΣ0,4 the filtration by degree. It is injective and the Hilbert series of B and AΣ0,4 are equal,
so Φ′ is an isomorphism.

3.5.2 The Punctured Torus

We now obtain a presentation of the algebra of invariants for our second surface, the punctured
torus. This is simpler than the four–punctured torus case, and the proofs follow in a similar
manner.

Definition 3.5.9. Let T be the algebra with generators X,Y, Z and relations:

Y X − q−1XY = (q − q−1)Z;

XZ − q−1ZX = −q−3(q − q−1)Y ;

ZY − q−1Y Z = −q−3(q − q−1)X.

It has a central element

L := q5XZY + q3Y 2 − q4Z2 + q3X2 − (q − q−1).

Proposition 3.5.10. The monomials

{
XαY βZγ

∣∣ α, β, γ ∈ N0
}

are a PBW basis for the algebra T .

Proof. We use the reduced degree with the generators ordered by X < Y < Z as our ordering.
From the relations of T we obtain the term rewriting system

σY X : Y X 7→ q−1XY + (q − q−1)Z;

σZX : ZX 7→ qXZ + q−2(q − q−1)Y ;

σZY : ZY 7→ q−1Y Z − q−3(q − q−1)X.

this term rewriting system is compatible with the ordering, and its only ambiguity (σZY , σY X , Z,X, Y )
is resolvable, so by the Diamond Lemma the reduced monomials

{
XαY βZγ

∣∣ α, β, γ ∈ N0
}

form a PBW basis for the algebra.

Organise the generators of AΣ1,1 into matrices as follows:

A :=
(
a1

1 a1
2

a2
1 a2

2

)
, B :=

(
b11 b12

b21 b22

)
.

Theorem 3.5.11. Define the map Ψ : T → O⊗2
q by

X 7→ Trq(A),

Y 7→ Trq(B),

Z 7→ Trq(AB).

The restricted map Ψ′ : T → AΣ1,1 is an algebra isomorphism.

55



Proof. To check that Ψ is a morphism of algebras one must check that the images of the three
relations are satisfied in O⊗2

q , which is a long but straightforward calculation. As all quantum
traces lie in AΣ1,1 , the codomain of Ψ can be restricted to define Ψ′ . So to show Ψ′ is an
isomorphism of algebras it remains to show Ψ′ is a bijection which will be done by proving Ψ
is injective and Ψ′ is surjective.

Lemma 3.5.12. The set {
Ψ
(
XαY βZγ

) ∣∣ α, β, γ ∈ N0
}

in linearly independent in O⊗2
q , so the homomorphism Ψ : T → O⊗2

q is injective.

Proof. In this proof we use the filtration in defined in Definition 3.5.4 restricted toO⊗2
q . Suppose

the contrary to that the set

{
Ψ
(
XαY βZγ

) ∣∣ α, β, γ ∈ N0
}

is linearly dependent then for some finite indexing set I there exists scalars ci which are not all
zero such that ∑

i∈I
ciΨ(XαiY βiZγi) = 0 ∈ O⊗2

q . (3.23)

Map this to G(O⊗2
q ): ∑

i∈I
ciΨ(XαiY βiZγi) = 0 ∈ G (O⊗2

q ). (3.24)

As G(O⊗2
q ) is graded, we can assume that all the terms in expression (3.24) are in the maximal

degree; we also know that

Φ(X) = Trq(A) = a1
1 ∈ G1,

Φ(Y ) = Trq(B) = b11 + q−1b22 ∈ G2,

Φ(Z) = Trq(AB) = a1
2b

2
1 ∈ G4,

so expression (3.24) implies that:∑
i∈I,S(i)=N

ci(a1
1)αi(b11 + q−1b22)βi(a1

2b
2
1)γi = 0, (3.25)

where S(i) := αi + 4(βi + γi) and N ∈ N0. The crossing relations

b11a
1
2 = a1

2b
1
1 ∈ G4, b21a

1
2 = q−2a1

2b
2
1 ∈ G4,

b22a
1
2 = a1

2b
2
2 ∈ G4, b22b

1
1 = b11b

2
2 ∈ G4,

b22b
1
2 = q2b12b

2
2 ∈ G4,

can be used to reorder the term in expression (3.25) to give

∑
i∈I,

S(i)=N

βi∑
k=0

ciq
Ai,k(a1

1)αi(a1
2)γi(b11)k(b21)γi(b22)βi−k = 0, (3.26)

for some constants Ai,k ∈ Z.
Using the basis for AΣ1,1 given in Proposition 3.2.8, the expression (3.26) is linear combi-
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nation of distinct monomials which are in the basis of G(O⊗2), so all the coefficients must be
zero. This is a contradiction as we assumed that not all the ci were zero.

In order to prove surjectivity of Ψ′ we shall give T a filtration.

Definition 3.5.13. We define a filtration on the algebra T by defining the degree of the
generators as follows:

• Degree 1: X,Y ;

• Degree 2: Z.

Lemma 3.5.14. The associated graded algebra G (T ) has a PBW basis

{
XαY βZγ

∣∣ α, β, γ ∈ N0
}
.

Proof. The associated graded algebra G (T ) is the algebra with generators X,Y, Z subject to
the relations:

Y X = q−1XY + (q − q−1)Z; XZ = q−1ZX; ZY = q−1Y Z;

We can apply the Diamond Lemma with the above relations as the term rewriting system.

Lemma 3.5.15. The algebras T and AΣ1,1 have the same Hilbert series when T is given the
filtration in Definition 3.5.13 and AΣ1,1 the filtration by degree.

Proof. The Hilbert series of AΣ1,1 was computed in Section 3.4 to be 1
(1−t)2(1−t2) . We note

from Lemma 3.5.14 that {
XαY βZγ

∣∣ α, β, γ ∈ N0
}
.

is a basis of G (T ), so there is a grading preserving vector space isomorphism

G (T )→ C[X]⊗ C[Y ]⊗ C[X] :

XαY βZγ 7→ Xα ⊗ Y β ⊗ Zγ ;

hence,
hT (t) = hC[X](t) · hC[Y ](t) · hC[Z](t).

If x = X,Y the algebra C[x] is the polynomial algebra graded by degree, so (C[x])[n] has basis
{xn }, and

hC[x](t) =
∞∑
n=0

(dim (C[x]) [n])tn =
∞∑
n=0

tn = 1
1− t .

The algebra C[Z] is the polynomial algebra graded by two times the degree, so (C[Z])[n] has
basis

{
Z
n
2
}

if n ≡ 0 mod 2 and ∅ otherwise, and

hC[Z](t) =
∞∑
n=0

(dim (C[Z]) [n])tn =
∞∑
n=0

t2n = 1
1− t2 .

Thus

hT (t) = hC[X](t) · hC[Y ](t) · hC[Z](t)
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= 1
(1− t)2(1− t2) ,

which means that T and AΣ1,1 have the same Hilbert series.

The homomorphism Ψ′ is filtered if we give T the filtration in Lemma 3.5.14 and AΣ1,1 the
filtration by degree. It is injective and the Hilbert series of T and AΣ1,1 are equal, so Ψ′ is an
isomorphism.

3.6 Isomorphisms with Skein Algebras, Spherical Double
Affine Hecke Algebras and Cyclic Deformations

In this section we use the presentation of the algebras of invariants A0,4 and A1,1 of the four–
punctured sphere Σ0,4 and punctured torus Σ1,1 over Uq(sl2) obtained in the previous section.
We state isomorphisms between A0,4 and two isomorphic algebras: SHq,t, the spherical double
affine Hecke algebra of type C∨C1, and Sk(Σ0,4), the Kauffman bracket skein algebra of the
four–punctured sphere. We also state isomorphisms between A1,1 and two isomorphic algebras:
Uq(su2), a cyclic deformation of U(su2), and Sk(Σ1,1), the Kauffman bracket skein algebra of
the punctured torus.

The Kauffman Bracket Skein Algebra

Definition 3.6.1. The Kauffman bracket skein module Skq(M) of an oriented 3–manifold M

(possibly with boundary) is the vector space of formal linear sums of isotopy classes of framed
links without contractible components in M (but including the empty link) on which we impose
the Kauffman bracket skein relations:

= q−1 +q ,

= −q2 − q−2.

Definition 3.6.2. The Kauffman bracket skein algebra Sk(Σ) of the surface Σ is the Kauffman
bracket skein module Sk(Σ× [0, 1]). It is an algebra with multiplication given by stacking copies
of Σ× [0, 1] on top of each other and retracting.

Theorem 3.6.3. [BS18, BP00] Let pi denote the loops around the four punctures of Σ0,4 and
let xi denote the loops around punctures 1 and 2, 2 and 3, 1 and 3 respectively (see Figure 3.5).
The Kauffman bracket skein algebra Sk(Σ0,4) has a presentation where the generators are xi

and pi, and the relations are

[xi, xi+1]q2 = (q4 − q−4)xi+2 − (q2 − q−2)pi (indices taken modulo 3);

ΩK = (q2 + q−2)2 − (p1p2p3p4 + p2
1 + p2

2 + p2
3 + p2

4);

where [a, b]q := qab− q−1ba is the quantum Lie bracket and

ΩK := −q2x1x2x3 + q4x2
1 + q−4x2

2 + q4x2
3 + q2p1x1 + q−2p2x2 + q2p3x3.

58



Figure 3.5: The loops x1, x2 and x3

Theorem 3.6.4 [BP00]. The Kauffman bracket Skein algebra Sk(Σ1,1) has a presentation with
generators x1, x2, x3 and relations

[xi, xi+1]q = (q2 − q−2)xi+2 (indices taken modulo 3).

The Spherical Double Affine Hecke Algebras SHq,t and SHq,t, and the Cyclic De-
formation of U(su2)

Double Affine Hecke Algebras (DAHAs) were introduced by Cherednik [Che92], who used them
to prove Macdonald’s constant term conjecture for Macdonald polynomials, but have since
found wider ranging applications particularly in representation theory [Che04, Che13]. DAHAs
can be associated to different root systems with Cherednik’s original DAHA being associated
to the A1 root system.

Definition 3.6.5. The A1 double affine Hecke algebra Hq,t is the algebra with generators X±1,
Y ±1 and T , and relations

TXT = X−1, TY −1T = Y, XY = q2Y XT 2, (T − t)(T + t−1) = 0.

The element e = (T + t−1)/(t + t−1) is an idempotent of Hq,t, and is used to define the
spherical subalgebra SHq,t := eHq,te.

Theorem 3.6.6 [Ter13, Sam14]. The spherical double affine Hecke algebra SHq,t has a pre-
sentation with generators x, y, z and relations

[x, y]q = (q2 − q−2)z, [z, x]q = (q2 − q−2)y, [y, z]q = (q2 − q−2)x

q2x2 + q−2y2 + q2z2 − qxyz =
(
t

q
− q

t

)2
+
(
q + 1

q

)2

where [a, b]q := qab− q−1ba is the quantum Lie bracket.

The double affine Hecke algebra Hq,t of type C∨C1 is a 5–parameter deformation of the affine
Weyl group C[X±, Y ±]oZ2 with deformation parameters q ∈ C∗ and t = (t1, t2, t3, t4) ∈ (C∗)4.
It can be given an abstract presentation with generators are T0, T1, T

∨
0 , T

∨
1 and relations:

(T0 − t1)(T0 + t−1
1 ) = 0,

(T∨0 − t2)(T∨0 + t−1
2 ) = 0,

(T1 − t3)(T1 + t−1
3 ) = 0,

(T∨1 − t4)(T∨1 + t−1
4 ) = 0,
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T∨1 T1T0T
∨
0 = q.

It generalises Cherednik’s double affine Hecke algebras of rank 1 as Hq;t := Hq,(1,1,t−1,1). The
element e = (T1 + t−1

3 )/(t3 + t−1
3 ) is an idempotent of Hq,t, and is used to define the spherical

subalgebra SHq,t := eHq,te.

Theorem 3.6.7. [Ter13, BS18] The spherical double affine Hecke algebra SHq,t has a presen-
tation with generators x, y, z and relations

[x, y]q = (q2 − q−2)z − (q − q−1)γ

[y, z]q = (q2 − q−2)x− (q − q−1)α

[z, x]q = (q2 − q−2)y − (q − q−1)β

Ω = t1
2 + t2

2 + qt3
2 + t4

2 − t1t2(qt3)t4 + (q + q−1)2

where

α := t1t2 + qt3t4,

β := t1t4 + qt3t2,

γ := t2t4 + qt3t1,

Ω := −qxyz + q2x2 + q−2y2 + q2z2 − qαx− q−1βy − qγz,

[a, b]q := qab− q−1ba is the quantum Lie bracket.

Proposition 3.6.8 [BS18]. There is an isomorphism δ : Sk(Σ0,4)→ SHq,t given by

β(x1) = x, β(p1) = it1,

β(x2) = y, β(p2) = it2,

β(x3) = z, β(p3) = iqt3,

β(q) = q2, β(p4) = it4.

Definition 3.6.9 [BP00, Zac90]. The cyclic deformation of U(su2) is given by

Uq(su2) := C〈y1, y2, y3|[yi, yi+1]q = yi+2〉.

where indices are taken modulo 3.

Proposition 3.6.10 [BP00]. When (q2 − q−2) is non–invertible there is an isomorphism

ν : Sk(Σ1,1)→ Uq(su2) : xi 7→ (q2 − q−2)yi.

Note that the element q2x2
1 + q−2x2

2 + q2x2
3 − qx1x2x3 is central in Uq(su2) and setting it

equal to
(
t
q −

q
t

)2
+
(
q + 1

q

)2
recovers the spherical DAHA SHq,t.
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Relation to Algebra of Invariants

Proposition 3.6.11. There is an isomorphism α : SHq,t → AΣ0,4 defined by

α(x) = −qE, α(t1) = iqs,

α(y) = −qF, α(t2) = iqt,

α(z) = −qG, α(qt3)= iqv,

α(t4) = iqu.

Proof. By rewriting the relations in the presentation of AΣ given in Definition 3.5.1 in terms
of the quantum Lie bracket [·, ·]q, we see that the algebra of invariants AΣ has generators
E,F,G, u, v, s, t and relations:

[E,F ]q = −q−1(q2 − q−2)G+ (q − q−1)(sv + tu)

[F,G]q = −q−1(q2 − q−2)E + (q − q−1)(st+ uv)

[G,E]q = −q−1(q2 − q−2)F + (q − q−1)(su+ tv)

Ω̃ = −q2s2 +−q2t2 − q2u2 − q2v2 − q4stuv + q−2(q2 + 1)2

where

Ω̃ = q4EFG− q4(st+ uv)E − q2(su+ tv)F − q4(sv + tu)G

+ q4E2 + F 2 + q4G2.

Also note that

α(Ω) = α(−qxyz + q2x2 + q−2y2 + q2z2 − qαx− q−1βy − qγz)

= q4EFG+ q4E2 + F 2 + q4G2 − q4(st+ uv)E − q2(su+ tv)F − q4(sv + tu)G

= Ω̃.

The map α is clearly bijective, so it remains to show it is a algebra homomorphism:

α
(
[x, y]q − (q2 − q−2)z + (q − q−1)γ

)
= q2[E,F ]q + (q2 − q−2)q2G− (q − q−1)q2(sv + tu)

= q2 ([E,F ]q + (q2 − q−2)G− (q − q−1)(sv + tu)
)

= 0

and similarly for the next two relations. For the final relation:

α(t1
2 + t2

2 + qt3
2 + t4

2 − t1t2qt3t4 + (q + q−1)2)− Ω))

= −q2s2 − q2t2 − q2v2 − q2u2 − q4stuv + (q + q−1)2)− Ω̃

= 0.

Corollary 3.6.12. There is an isomorphism β : Skq(Σ0,4)→ AΣ0,4 defined by

β(x1) = −qE, β(p1) = − qs,
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β(x2) = −qF, β(p2) = − qt,

β(x3) = −qG, β(p3) = − qv,

β(q) = q2, β(p4) = − qu.

Proof. Immediate from Proposition 3.6.8.

Proposition 3.6.13. There is an isomorphism γ : AΣ1,1 → Sk(Σ1,1) defined by

γ(q) = q2,

γ(X) = iq−2x2,

γ(Y ) = iq−2x1,

γ(Z) = −q−5x3.

Hence, A1,1 is isomorphic to Uq(su2).

3.7 Isomorphism with a Quantisation of the Moduli Space
of Flat Connections

In their paper ‘Supersymmetric gauge theories, quantization of Mflat, and conformal field the-
ory’, Teschner and Vartanov propose a quantisation for the SL2–character varieties of sur-
faces. They state generators and relations for the quantisation of ChSL2(Σ0,4) and ChSL2(Σ1,1)
with the quantisation for other surfaces given by decomposing the surface into such sur-
faces. In this section we shall briefly outline this decomposition before stating isomorphisms
ChSL2(C)(Σ0,4) ∼= A0,4 and ChSL2(C)(Σ1,1) ∼= A1,1 to the quantisation of the SL2–character
varieties given by algebras of invariants.

Definition 3.7.1. The Poisson algebra of algebraic functions on ChG(Σ) is denoted A(Σ).

Definition 3.7.2. We can associate to the Riemann surface Σ a pants decomposition σ =
(Cσ,Γσ) where:

1. The cut system Cσ = { γ1, . . . , γn } is a set of homotopy classes of simple closed curves on
Σ such that cutting along these curves produces a pants decomposition

Σ\Cσ ' tνΣν0,3 tµ Σµ0,1

where the Σν0,3 are the ‘pairs of pants’ and the Σµ0,1 are discs which are used to fill any
unwanted punctures;

2. The Moore–Seilberg graph Γσ is a 3–valent graph specifying branch cuts, and is needed
to distinguish when a Dehn twist has been applied to Σ.

We shall now describe a presentation for A(Σ) which is dependent to a choice of pants
decomposition. By Dehn’s theorem, a curve γ can be classified uniquely up to homotopy by
the Dehn parameters

{ (pi, qi) | i = 1 . . . n }

where pi and qi are respectively the intersection number and the twisting number between γ

and γi ∈ Cσ.
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Each curve e ∈ Γσ which does not end in the boundary of Σ lies in a subspace Σe which is
homotopic to either Σ0,1 or Σ1,1: if e is a loop then Σe ' Σ1,1, and if it is not then Σe ' Σ0,4.
To e we assign the curves:

1. γes := γe is the unique curve γe ∈ Cσ which lies in the interior of Σe; it is the curve in cut
system for Σ which also defines a cut system for Σe;

2. γet has Dehn parameters { (pei , 0) | i = 1, . . . , n };

3. γeu has Dehn parameters { (pei , δi,e) | i = 1, . . . , n }

where pei :=

2δi,e if Σe ' Σ0,4

δi,e if Σe ' Σ1,1.

Definition 3.7.3. Let γ be a closed curve on Σ then its geodesic length function is Lγ :=
νγ Trq(ρ(γ)) where ν is a sign and ρ : π1(Σ)→ SL2 is the uniformisation representation.

Remark 3.7.4. The geodesic length functions depend only on the homotopy class of the curve,
and the satisfy the ‘Skein’ relation

LS(γ1,γ2) = Lγ1Lγ2

where S(γ1, γ2) is a curve with a crossing point and γ1, γ2 are the curves which result from the
symmetric smoothing operation:

S7−→ +

Proposition 3.7.5. [VT13] The generators of A(Σ) are

{Les, Let , Leu | e ∈ Γ is an interior edge }

where Lek = |Lγe
k
|. There is a single relation Pe(Les, Let , Leu) on A(Σ) for each internal edge e:

Pe(Les, Let , Leu) = −LesLetLeu + (Les)2 + (Let )2 + (Leu)2

+ Les(L3L4 + L1L2) + Let (L2L3 + L1L4) + Leu(L1L3 + L2L4)

− 4 + L2
1 + L2

2 + L2
3 + L2

4 + L1L2L3L4 when Σe ' Σ0,4, and

Pe(Les, Let , Leu) = −LesLetLeu + (Les)2 + (Let )2 + (Leu)2 + L0 − 2 when Σe ' Σ1,1,

where L1, L2, L2, L4 are loops around the four punctures of Σ0,4, and L0 is a loop around the
single puncture of Σ1,1. The Poisson bracket on A(Σ) is given by

{Lγ1 , Lγ2 } = LA(γ1,γ2),

where A is the antisymmetric smoothing operation:

A7−→ −
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Figure 3.6: Applied to the four–punctured sphere.

As A(Σ) is given by local data on copies of Σ0,4 and Σ1,1, Teschner and Vartanov state the
deformation for these basic surfaces.

Proposition 3.7.6 [VT13]. The deformation Ab(Σ0,4) of A (Σ0,4) is generated by Ls, Lt, Lu, L1, L2, L3, L4

with relations

Qe(Ls, Lt, Lu) = eπib
2
LsLt − e−πib

2
LtLs

− (e2πib2 − e−2πib2)Lu − (eπib
2
− e−πib

2
)(L1L3 + L2L4)

Pe(Ls, Lt, Lu) = −eπib
2
LsLtLu + e2πib2L2

u + e2πib2L2
s + e−2πib2L2

t

+ eπib
2
(L1L3 + L2L4)Lu + eπib

2
(L3L4 + L2L1)Ls

+ e−πib
2
(L1L4 + L2L3)Lt + L2

1 + L2
3 + L2

2 + L2
4 + L1L3L2L4

− (2 cos(πb2))2

where the quadratic relations Qe arise from deforming the Poisson bracket.

Proposition 3.7.7 [VT13]. The deformation Ab(Σ1,1) of A (Σ1,1) is generated by Ls, Lt, Lu, L0

with relations

Qe(Ls, Lt, Lu) = e
πi
2 LsLt − e−

πi
2 LtLs − (eπib

2
− e−πib

2
)Lu

Pe(Ls, Lt, Lu) = eπib
2
L2
s + e−πib

2
L2
t + eπib

2
L2
u − e

πi
2 LsLtLu + L0 − 2 cos(πb2)

Using the presentation for the algebras of invariants AΣ0,4 and AΣ1,1 from Section 3.5, we
see that we have the following isomorphisms:

Proposition 3.7.8. The algebra of invariants AΣ0,4 is isomorphic to Ab(Σ0,4) with isomor-
phism ι : AΣ0,4 → Ab(Σ0,4) defined by

ι(q) = eiπb
2
, ι(s)= e−iπb

2
L1,

ι(E) = −e−iπb
2
Lu, ι(t) = e−iπb

2
L3,

ι(F ) = −e−iπb
2
Ls, ι(v)= e−iπb

2
L2,

ι(G) = −e−iπb
2
Lt, ι(u)= e−iπb

2
L4.

Proof. The map κ : SHq,t → Ab(Σ0,4) defined by

q 7→ eiπb
2
, t1 7→ iL1,
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x 7→ Lu, t2 7→ iL3,

y 7→ Ls, qt3 7→ iL2,

z 7→ Lt, t4 7→ iL4,

maps SHq,t to an algebra generated by Ls, Lt, Lu with relations

0 = eπib
2
LuLs − e−πib

2
LsLu − (e2πib2 − e−2πib2)Lt − (eπib

2
− e−πib

2
)(L1L4 + L2L3)

0 = eπib
2
LsLt − e−πib

2
LtLs − (e2πib2 − e−2πib2)Lu − (eπib

2
− e−πib

2
)(L1L3 + L2L4)

0 = eπib
2
LtLu − e−πib

2
LuLt − (e2πib2 − e−2πib2)Ls − (eπib

2
− e−πib

2
)(L3L4 + L2L1)

0 = −eπib
2
LsLtLu + e2πib2L2

u + e2πib2L2
s + e−2πib2L2

t

+ eπib
2
(L1L3 + L2L4)Lu + eπib

2
(L3L4 + L2L1)Ls + e−πib

2
(L1L4 + L2L3)Lt

+ L2
1 + L2

3 + L2
2 + L2

4 + L1L3L2L4 − (2 cos(πb2))2

which is just the algebra Ab(Σ0,4). Hence the algebra AΣ0,4 is isomorphic to both SHq,t and
Ab(Σ0,4) and isomorphism ι : AΣ0,4 → Ab(Σ0,4) is given by κ ◦ α−1.

Proposition 3.7.9. The algebra of invariants AΣ1,1 is isomorphic to Ab(Σ1,1) with isomor-
phism µ : AΣ1,1 → Ab(Σ1,1) defined by

µ(Y ) = iq−1s

µ(X) = iq−1t

µ(Z) = −q− 5
2u

µ(L) = L0

65



66



Chapter 4

Relative Tensor Products, Skein
Categories and Factorisation
Homology

The goal of this chapter is to prove that skein categories satisfy excision, and hence to show
that they are k–linear factorisation homologies whose free cocompletions recover the presentable
factorisation homologies considered in the previous chapter.

We begin by proving that the colimit of the 2–sided bar construction in Catk is the relative
tensor product of k–linear categories which was defined by Tambara [Tam01] and has a concrete
description. This colimit defines the relative tensor product in k–linear factorisation homology
used in the statement of excision, so to prove excision of skein categories it suffices to prove
excision where the relative tensor product is the relative tensor product of k–linear categories.
Then in Section 4.2 we define skein categories and prove that skein categories satisfy excision.
Finally in Section 4.3 we use the results of the previous two sections to conclude that skein
categories are k–linear factorisation homologies and relate them to presentable factorisation
homologies.

4.1 Relative Tensor Products

4.1.1 Relative Tensor Product of k-linear Categories

The definition of the relative tensor product of k–linear categories is a categorical analogue of
the definition of the relative tensor product of modules. The definition of the relative tensor
product of modules can be reformulated as follows:

Definition 4.1.1. Let R be a ring, M be a right R–module, N be a left R–module, and G be
an abelian group.

1. A homomorphism f : M ×N → G is R–balanced if it is linear and f(m · r, n) = f(m, r ·n)
for all r ∈ R,m ∈M,n ∈ N .

2. The abelian group BalR(M,N ;G) is the set of all R–balanced homomorphisms M ×
N → G with the sum and inverses of balanced homomorphisms defined pointwise, i.e.
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(−f)(m,n) := −f(m,n) and (f+g)(m,n) := f(m,n)+g(m,n) for all f, g ∈ BalR(M,N ;G),
m ∈M,n ∈ N .

3. The relative tensor product M ⊗RN is an abelian group satisfying the universal property
that HomZ(M ⊗R N,G) ∼= BalR(M,N ;G) for all abelian groups G.

Instead of being relative to a ring A, a relative tensor product M⊗A N of k–linear categories
is relative to a monoidal k–linear category A . Instead of being A–modules, M and N must
be A –module categories.

Definition 4.1.2. Let A be a monoidal k–linear category. A left A –module category is a
k–linear category M equipped with a k–bilinear functor

B : A ⊗M →M : (a,m) 7→ aBm,

a natural isomorphism

β : B ( B )→ ( ⊗ )B with components βa,b,m : aB (bBm)→ (a⊗ b)Bm

called the associator, and a natural isomorphism

η : 1A B → with components ηm : 1A Bm→ m

called the unitor which make the following diagrams commute for all a, b, c ∈ A and m ∈M

aB (bB (cBm))

(a⊗ b)B (cBm)

((a⊗ b)⊗ c)Bm (a⊗ (b⊗ c))Bm

aB ((b⊗ c)Bm)

βa,b,cBm

βa⊗b,c,m

αa,b,cBIdm

βa,b⊗c,m

IdaBβb,c,m

aB (1A Bm) (a⊗ 1A )Bm

aBm

βa,1A ,m

IdaBηm
ρaBm

The definition for a right A –module category is analogous.

Tambara in [Tam01] defines the relative tensor product M �C M of the right C –module
category M and the left C –module category N relative to the monoidal category A .

Definition 4.1.3. A bilinear functor F : M × N → C is A –balanced if there is a natural
isomorphism which on components is

ιm,a,n : F (mC a, n)→ F (m, aB n)
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satisfying the commutative diagram

((mC a)C b, n)

(mC a, bB n)

(m, aB (bB n)) (m, (a ∗ b)B n)

(mC (a ∗ b), n)

ιmCa,b,n

ιm,a,bBn

(Idm,βa,b,n)

ιm,a∗b,n

(βm,a,b,Idn)

for all m ∈M , a, b ∈ A and n ∈ N .

Definition 4.1.4. The natural transformation α : F =⇒ G of A –balanced functors F,G :
M ⊗N → C is a A –balanced natural transformation if it is compatible with the balancings,
i.e the following diagram commutes

F (mC a, n) F (m, aB n)

G(mC a, n) G(m, aB n)

(ιF )m,a,n

α(mCa,n) α(m,aBn)

(ιG)m,a,n

Definition 4.1.5. We denote the category of A –balanced functions M ×N → C with A –
balanced natural transformations are morphisms by FunA –bal(M ,N ; C ).

Definition 4.1.6 [Tam01]. Let C be a k–linear monoidal category, let M be a right C –module
k–linear category, and let N be a left C –module k–linear category. The relative tensor product
of M and N relative to A is a k–linear category M �A N together with a A –balanced
functor P : M × N → C such that for all k–linear categories C there is an equivalence of
categories

FunA –bal(M ,N ; C ) ' Catk(M �A N ,C )

given by composing functors in with P .

Tambara then shows the existence of such a relative tensor product by constructing it.

Definition 4.1.7 [Tam01]. Let A be a k–linear monoidal category, let M be a k–linear
right A –module category, and let N be a k–linear left A –module category. The relative
tensor product M �A N is the k–linear category with the following generators and relations.
The objects of M �A N are tuples (m,n) where m ∈ M and n ∈ N . The morphisms of
M �A N are generated by morphisms (f, g), where f : m → m′ is a morphism in M and
g : g → g′ is a morphism in N , and by morphisms ιm,a,n : (m C a, n) → (m, a B n) and
ι−1
m,a,n : (m, a B n) → (m C a, n), where m ∈ M , a ∈ A and n ∈ N . The morphisms satisfy

the following relations:

Linearity (f+f ′, g) = (f, g)+(f ′, g), (f, g+g′) = (f, g)+(f, g′) and a(f, g) = (af, g) = (f, ag);

Functionality (f ′f, g′g) = (f ′, g′) ◦ (f, g) and (Idm, Idn) = Id(m,n);

Isomorphism ιm,a,n ◦ ι−1
m,a,n = Id(m,aBn) and ι−1

m,a,n ◦ ιm,a,n = Id(mCa,n);
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Naturality ιm′,a′,n′ ◦ (f C u, g) = (f, uB g) ◦ ιm,a,n

Pentagon and Triangle
((mC a)C b, n)

(mC a, bB n)

(m, aB (bB n)) (m, (a ∗ b)B n)

(mC (a ∗ b), n)

ιmCa,b,n

ιm,a,bBn

(Idm,βa,b,n)

ιm,a∗b,n

(βm,a,b,Idn)

(mC IdA , n) (m, IdA Bn)

(m,n)

ιm,IdA ,n

(θm,Idn)
(Idm,ηn)

The A –balanced bilinear functor P : M ×N →M �A N is defined by P (m,n) = (m,n) on
objects and P (f, g) = (f, g) on morphisms.

4.1.2 Bicolimits

All of the 2–categories we consider in this thesis are strict; however, we shall use weak colimits
(bicolimits) rather than strict 2–colimits. These definitions can be found in [Str72, Lei04, B6́7].

Definition 4.1.8. Let F,G : C → D be 2–functors between 2–categories. A lax natural
transformation σ : F → G consists of:

1. for each object x in C , a morphism σx : F (x)→ G(x);

2. for each pair of objects (x, y) in C , a natural transformation

σx,y : (σx)∗ ◦G(x, y)→ (αy)∗ ◦ F (x, y)

where (σx)∗ and (αy)∗ are defined by pre and post composing with σ:

(σy)∗ : F (x) F (y)
F (f)

F (g)

ξ 7→ F (x) F (y) G(y)
F (f)

F (g)

ξ
σy

(σx)∗ : G(x) G(y)
G(f)

G(g)

ξ 7→ F (x) G(x) G(y)σx

G(f)

G(g)

ξ

such that,

1. or every object x of C , σ1x is the identity natural transformation, and

2. for every pair of morphisms (f, g) ∈ C (y, z)× C (x, y), σf◦g = (σfF (g)) ◦ (G(f)σg).

A pseudonatural transformation is a lax natural transformation whose 2–cells are invertible,
so in (2, 1)–categories pseudonatural transformations and lax natural transformations are the
same.

Remark 4.1.9. Lax and pseudonatural transformation are usually defined to be between pseud-
ofunctors (functors between bicategories whose compatiblity morphisms are invertible). In this
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case the conditions σ must satisfy are more complex as there are associators and unitors to take
into consideration.

Definition 4.1.10. Given two lax–natural transformations

C D

F

G

ηζ

a modification Γ : ζ → η assigns to each object x ∈ C a 2–morphism

F (x) G(x)

ζ(x)

η(x)

Γ(x)

in D such that for all morphisms f : x→ y in C the following diagram commutes

G(f) ◦ ζ(x) G(f) ◦ η(x)

ζ(y) ◦ F (f) η(y) ◦ F (f)

G(f)Γx

ζ(f) η(f)

Γ(f)F (f)

Remark 4.1.11. The definition of a modification between 2–natural transformations is identical
to the definition for lax natural transformations, so one can extend 2Cat, the 2–category of
2–categories, to a (strict) 3–category by taking modifications as 3–morphisms.

Definition 4.1.12. Let C be a (2, 1)–category and let D be a small (2, 1)–category. A diagram
X of shape D in C is a lax functor X : D → C .

Remark 4.1.13. We shall assume that X : D → C is always a strict 2–functor.

Definition 4.1.14. Let DiagD(C ) denote the (2, 1)–category of diagrams of shape J in C :

1. The objects are diagrams of shape J in C ;

2. The 1–morphisms are pseudonatural transformations;

3. The 2–morphisms are modifications.

Definition 4.1.15. Let x be an object of C and let X denote the (2, 1)–category with an
single object x, a single 1–morphism 1x and a single 2–morphism which is the trivial 2–cell
1 : 1y → 1y. The trace functor on c is the 2–functor Trq(x) : C → X which sends all objects
in C to y, all 1–morphisms to 1x, and all 2–morphisms to 1.

Definition 4.1.16. Let C be a (2, 1)–category. Denote by Trq : C → DiagD(C ) the 2–functor
which sends an object x ∈ C to the trace functor Trq(x), a 1–morphism f : x → y to the
trivial pseudonatural transformation Γ : Trq(x) → Trq(y), and a 2–morphism to the trivial
modification σ : Γ→ Γ.

Definition 4.1.17. Let C be a 2–category and let X be a diagram of shape J in C . The 2–
colimit of X is an object Bicolim(X) in C together with a pseudonatural equivalence between
HomC (Bicolim(X), ) : C → C and DiagD(C )(X,Trq( )) : C → C .

71



Definition 4.1.18. If C is a (2, 1)–category then a 2–colimit of F : X → C is called a (2,1)–
colimit.

4.1.3 Colimits of the Truncated Bar Construction

In the next section we give relative tensor product of k-linear categories as the bicolimit in
Catk of the truncated bar construction. Before doing this we briefly expand the definition of a
bicolimit of the shape of the truncated bar construction.

Definition 4.1.19. Let D be the 2–category

A B C
g2

g1

g3

f1

f2

with 2–cells

κ1 : f2 ◦ g1 → f1 ◦ g3, κ2 : f1 ◦ g1 → f1 ◦ g2, κ3 : f2 ◦ g3 → f2 ◦ g2;

and let X : D → C be a (strict) 2–functor to a 2–category C . The image of an object,
1–morphisms or 2–morphisms under X is denoted without a bar, so

X

 A B C
g2

g1

g3

f1

f2

 = A B C
g2

g1

g3

f1

f2
and X(κi) = κi.

Recall from Section 4.1.2 that the colimit of X is an object Bicolim(X) in C together with
a pseudonatural equivalence Γ : HomC (Bicolim(X), ) → DiagD(C )(X,Trq( )). This means
that for all Y ∈ C there is an equivalence of categories

ΓY : HomC (Bicolim(X), Y )→ DiagD(C )(X,Trq(Y )),

so in order to understand Bicolim(X) we shall first look at DiagD(C )(X,Trq(Y )).

Proposition 4.1.20. The category DiagD(C )(X,Trq(Y )) has objects of the form

σ =


σA : A→ Y

σB : B → Y

σC : C → Y

σfi : σB → σC ◦ fi
σgj : σA → σB ◦ gj


where i = 1, 2 and j = 1, 2, 3, which satisfy the relations:

σCκ1 = ∆13∆−1
21 ,

σCκ2 = ∆12∆−1
11 ,

σCκ3 = ∆22∆−1
23
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where ∆ij := (σfigj)σgj . The morphisms of DiagD(C )(X,Trq(Y )) are natural isomorphisms

C

Y,

σC ηCΓ

satisfying the relations

η−1
f1

(Γf1)σf1 = η−1
f2

(Γf2)σf2

(∆η
ij)−1(Γfigj)∆σ

ij = (∆η
kl)
−1(Γfkgl)∆σ

kl

where i, k = 1, 2 and j, l = 1, 2, 3.

Proof. This proof amounts to unravelling the definitions. An object of DiagD(C )(X,Trq(Y ))
is a pseudonatural transformation σ : X → Trq(Y ). By the definition of a pseudonatural
transformation we have

1. for every X ∈ D , that is X = A,B,C, 1–morphisms σX : S(X)→
Tr(Y )(X): we shall usually denote these morphisms simply as σX as they are morphisms
σX : X → Y for X = A,B,C;

2. for every pair of objects (W,X) in D , a natural transformation

σW,X : (σW )∗ ◦ Trq(Y )(W,X)→ (σX)∗ ◦ S(W,X).

This means that for every 1–morphism h : W → X in D , that is h = g1, g2, g3, f1, f2, fi ◦
gj , 1W , there is a 2–morphism

σh : σW → σX ◦ h.

As we are working with (2, 1)–categories, σh is automatically a 2–isomorphism. As σW,X

is natural, we have for every 2–morphism κ : h → l, that is κ = κ1, κ2, κ3, Idh, that the
following diagram commutes

σW

σX ◦ h σX ◦ l

σh
σl

σY ◦κ

This result is trivial for Idh, so let κ = κ1, κ2 or, κ3. In which case, W = A, X = C,
l = fi ◦ gj and h = fk ◦ gl. As σh is invertible, we have that

σC ◦ κ = σfi◦gjσ
−1
fk◦gl

3. for every object X of D , σ1
X

is the identity natural isomorphism

4. for every composition of morphisms f ◦ g in D , σf◦g = (σfg)(σg)

So we have that σ : X → Trq(y) consists of 1–morphisms σX : X → Y for X = A,B,C;
and 2–morphisms σh : σW → σX ◦ h for h = fi, gj : W → X such that πDκ1 = ∆13∆−1

21 ,
πDκ2 = ∆12∆−1

11 and πDκ3 = ∆22∆−1
23 where ∆ij = (σfigj)σgj .

A morphism Γ : σ → η in DiagD(C )(X,Trq(Y )) is a modification between σ and η. The

73



modification Γ assigns to each object X ∈ D , that is X = A,B,C, a 2–morphism

X Y

σX

ηX

ΓX

such that the following diagram commutes for all h : W → X

σW ηW

σX ◦ h ηX ◦ h

ΓW

σh ηh

ΓXh

As all 2–cells are invertible, applying this relation to the fis gives

ΓB = η−1
fi

(ΓCfi)σfi

and then applying this relation to the gis gives

ΓA = η−1
gj (ΓBgj)σgj

= η−1
gj

((
η−1
fi

(ΓCfi)σfi
)
gj

)
σgj substituting ΓB = η−1

fi
(ΓCfi)σfi

= η−1
gj (η−1

fi
gj)(ΓCfigj)(σfigj)σgj as

(
η−1
fi

(ΓCfi)σfi
)
gj = (η−1

fi
gj)(ΓCfigj)(σfigj)

= (∆η
ij)−1(ΓCfigj)∆σ

ij

from which we conclude that it is sufficient to define ΓC and that the relation for gj is auto-
matically satisfied if it is for the compositions fi ◦ gj .

Remark 4.1.21. The morphisms σA, σB and σC fit into the diagram

A B C

Y ,
σA

g2

g1

g3

σB

f1

f2

σC

and the natural isomorphisms σfi and σgj are 2-cells in this diagram.

4.1.4 The Relative Tensor Product as a Colimit

Definition 4.1.22. Let A be a monoidal k–linear category and let M ,N be left/right A –
module k–linear categories. The truncated bar construction is the diagram

M ⊗A ⊗A ⊗N M ⊗A ⊗N M ⊗N

G1

G2

G3

F1

F2

where

G1 : M ⊗A ⊗A ⊗N : G1(m, a, b, n) = (mC a, b, n);

G2 : M ⊗A ⊗A ⊗N : G2(m, a, b, n) = (m, a ∗ b, n);

G3 : M ⊗A ⊗A ⊗N : G3(m, a, b, n) = (m, a, bB n);
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F1 : M ⊗A ⊗N : F1(m, a, n) = (mC a, n);

F2 : M ⊗A ⊗N : F2(m, a, n) = (m, aB n);

with m, a, b, n objects or morphisms in the categories M ,A ,A ,N respectively, and there are
two cells

κ1 : F2 ◦G1 → F1 ◦G3

κ2 : F1 ◦G1 → F1 ◦G2

κ3 : F2 ◦G3 → F2 ◦G2

where κ1 is the identity and κ2(n, a, b,m) : ((nCa)Cb,m)→ (nC (a∗b),m) and κ3(n, a, b,m) :
(n, aB (bBm))→ (n, (a ∗ b)Bm) are given by the associators of the A action.

Theorem 4.1.23. The relative tensor product M �A N of the right C –module k–linear cate-
gory M and the left C –module k–linear category N relative to the k-linear monoidal category
A is the bicolimit of the diagram

M ⊗A ⊗A ⊗N M ⊗A ⊗N M ⊗N

G1

G2

G3

F1

F2

with 2-cells κ1, κ2, κ3 defined above.

Proof. By the definition of a bicolimit there is an equivalence of categories

ΓC : Catc(Bicolim(X),C )→ DiagD(Catk)(X,Trq(C )),

so if there is an equivalence of categories

IC : DiagD(Catk)(X,Trq(C ))→ FunA –bal(M ,N ; C )

for every C ∈ Catk then by Definition 4.1.7 Bicolim(X) is the relative tensor product M�A N .
We shall now define IC and show it to be a equivalence of categories. Let σ be an object of

DiagD(Catk)(X,Trq(C )), so

σ =


σA : A→ Y

σB : B → Y

σC : C → Y

σFi : σB → σC ◦ Fi
σGj : σA → σB ◦Gj


where A := M ×A ×A ×N , B := M ×A ×N and C := M ×N . We define

IC (σ) := σC with balancing α : σCFi =⇒ σCF2 : α := σF2σ
−1
F1
.

A morphism of DiagD(Catk)(X,Trq(C )) is a natural isomorphism Γ : σ → η, we define

IC (Γ) := Γ.

IC is a well-defined functor
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This requires one to prove two things: α is an A –balancing and Γ is a natural transformation
of A –balanced functors. To show α is a balancing of σC we must show that the diagram

((mC a)C b, n)

(mC a, bB n)

(m, aB (bB n)) (m, (a ∗ b)B n)

(mC (a ∗ b), n)

αmCa,b,n=(αG1)(m,a,b,n)

αm,a,bBn=(αG3)(m,a,b,n)

σC(κ3)m,a,b,n

αm,a∗b,n=(αG2)(m,a,b,n)

σC(κ2)m,a,b,n

commutes for all (m, a, b, n) ∈M ×A ×A ×N . This is the case as

(σCκ3)(αG3)(σCκ1)(αG1)(σCκ−1
2 )

= ∆22∆−1
23 (σF2G3)(σ−1

F1
G3)∆13∆−1

21 (σF2G1)(σ−1
F1
G1)∆11∆−1

12

by definition of α and compatibility relations of σ

= (σF2G2)σG2σ
−1
G3

(σ−1
F2
G3)(σF2G3)(σ−1

F1
G3)(σF1G3)σG3σ

−1
G1

(σ−1
F2
G1)(σF2G1)(σ−1

F1
G1)(σF1G1)σG1σ

−1
G2

(σ−1
F1
G2)

by definition of ∆ij

= (σF2G2)(σ−1
F1
G2)

cancelling terms

= (σF2σ
−1
F1

)G2

= αG2

Hence, σC is A –balanced with balancing α.
Now we shall show that the natural transformation ΓC : σC → ηC is a natural transformation

of A –balanced functors. To show this me must show that that following diagram commutes:

σC(mC a, n) σC(m, aB n)

ηC(mC a, n) ηC(m, aB n)

(ασ)m,a,n

(ΓC)(mCa,n) (ΓC)(m,aBn)

(αη)m,a,n

This is the case as by the definition of Γ we have that

η−1
F1

(ΓCF1)σF1 = η−1
F2

(ΓCF2)σF2

=⇒ ηF2η
−1
F1

(ΓCF1) = (ΓCF2)σF2σ
−1
F1

=⇒ αη(ΓCF1) = (ΓCF2)ασ.

Thus, ΓC : σC → ηC is a natural transformation of A –balanced functors, and we have concluded
the proof that IC is well-defined.

IC is surjective
Let F : M ×N → C be an A –balanced functor with balancing α i.e. F is an object of
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FunA –bal(M ,N ; C ). Define

σ =



σA : A→ C is F
σB : B → C is FF1

σC : C → C is FF1G2

σF1 : FF1 → FF2 is the identity
σF2 : FF1 → FF2 is α
σG1 : FF1G2 → FF1G1 is Fκ−1

2

σG2 : FF1G2 → FF1G2 is the identity
σG3 : FF1G2 → FF1G3 is (α−1G3)(Fκ−1

3 )(αG2)


(4.1)

If σ is a well-defined element of DiagD(Catk)(X,Trq(C )) then IC (σ) = F , so it remains to
show that κ1 = ∆13∆−1

21 , σCκ2 = ∆12∆−1
11 and σCκ3 = ∆22∆−1

23 where ∆ij := (σFiGj)σGj :

∆13∆−1
21 = (σF1G2)σG2σ

−1
G1

(σ−1
F1
G1) by definition of ∆ij

= Fκ2 by definition of σFi , σGj .

∆22∆−1
23 = (σF2G2)σG2σ

−1
G3

(σ−1
F2
G3) by definition of ∆ij

= (αG2)(α−1G2)(Fκ3)(αG3)(α−1G3) by definition of σFi , σGj .

= Fκ3.

∆13∆−1
21 = (σF1G3)σG3σ

−1
G1

(σ−1
F2
G1) by definition of ∆ij

= (α−1G3)(Fκ−1
3 )(αG2)(Fκ2)(α−1G1) by definition of σFi , σGj

= Fκ1 i.e. identity, by pentagon of α.

IC is full and faithful.
Suppose IC (Γ) = IC (Ξ). By definition of IC this is Γ = Ξ; hence, IC is faithful.
Let ξ : F =⇒ G be a A –balanced natural transformation between the A –balanced functors

F,G : M ×N → A , i.e. ξ is a morphism of FunA –bal(M ,N ; C ). We have already shown IC
to be surjective, so we have σ and η such that IC (σ) = F and IC (η) = G where σ is defined
in 4.1 and η is defined analogously. In order to show that IC is full we must find a morphism
Γ : σ → µ in DiagD(Catk)(X,Trq(C )) such that IC (Γ) = ξ.

Define

Γ =

 M ×N

C
ηCσC

ΓC :=ξ

 .

As IC (Γ) = ξ, it remains to show Γ is a well-defined morphism in DiagD(Catk)(X,Trq(C ))
i.e. that

1. η−1
F1

(ΓCF1)σF1 = η−1
F2

(ΓCF2)σF2 and

2. (∆η
ij)−1(ΓCFiGj)∆σ

ij = (∆η
kl)−1(ΓCFkGl)∆σ

kl for all i, k = 1, 2; j, l = 1, 2, 3.

1. As ξ is an A –balanced natural transformation

(ηF2η
−1
F1

)m,a,nξ(mCa,n) = ξ(m,aBn)(σF2σ
−1
F1

)m,a,n
where σF2σ

−1
F1

is the balancing of IC (σ) and ηF2η
−1
F1

is the balancing of IC (η)

=⇒ (η−1
F1

)m,a,nξ(mCa,n)(σF1)m,a,n = (η−1
F2

)m,a,nξ(m,aBn)(σF2)m,a,n

77



=⇒ η−1
F1

(ΓCF1)σF1(m, a, n) = η−1
F2

(ΓCF2)σF2(m, a, n) ∀(m, a, n) ∈M ×A ×N

=⇒ η−1
F1

(ΓCF1)σF1 = η−1
F2

(ΓCF2)σF2

2. Denote Eq(i, j) := (∆η
ij)−1(ΓCFiGj)∆σ

ij . By definition of ∆i,j , σ and η we have that

∆σ
1j = (σF1Gj)σGj = σGj

∆η
1j = (ηFiGj)ηGj = ηGj

∆σ
2j = (σF1Gj)σGj = (ασGj)σGj

∆η
2j = (ηF1Gj)ηGj = (αηGj)ηGj

So

Eq(1, j) = η−1
Gj

(ξF1Gj)σGj and

Eq(2, j) = η−1
Gj

(α−1
η Gj)(ξF2Gj)(ασGj)σGj

= η−1
Gj

((
α−1
η (ξF2)ασ

)
Gj
)
σGj

= η−1
Gj

(ξF1Gj)σGj as ξ is A –balanced

= Eq(1, j).

This means it remains to show Eq(1, 1) = Eq(1, 2) = Eq(1, 3):

Eq(1, 2) = η−1
G2

(ξF1G2)

= (ξF1G2)

Eq(1, 1) = η−1
G1

(ξF1G1)

= (ηCκ2)(ξF1G1)(σCκ−1
2 )

= M ×A ×A ×N M ×N C

F1G2

F1G1

F1G2

κ−1
2

κ2

σC

ηC

ξ

= M ×A ×A ×N M ×N C
F1G2

σC

ηC

ξ

= (ξF1G2)

= Eq(1, 2)

Eq(1, 3) = (α−1
η G2)(ηCκ3)(αηG3)(ξF1G3)(α−1

σ G3)(σCκ−1
3 )(ασG2)

= (α−1
η G2)(ηCκ3)

( (
αη(ξF1)(α−1

σ

)
G3
)
(σCκ−1

3 )(ασG2)

= (α−1
η G2)(ηCκ3)(ξF2G3)(σCκ−1

3 )(ασG2) as ξ is A –balanced

= (α−1
η G2)(ξF2G2)(ασG2) by (†)

= ξF1G2 as ξ is A –balanced
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= Eq(1, 2)

where (†):

(ηCκ3)(ξF2G3)(σCκ−1
3 ) = M ×A ×A ×N M ×N C

F2G2

F2G3

F2G2

κ−1
3

κ3

σC

ηC

ξ

= M ×A ×A ×N M ×N C
F2G2

σC

ηC

ξ

= ξF2G2

4.2 Skein Categories

4.2.1 Skein Categories and Coloured Ribbon Graphs of Surfaces

A skein category is a categorical analogue of a skein algebra. The definition we use follows
that stated by Johnson-Freyd in [Joh15] which in turn is a modification of a generalisation to a
general surfaces of the category RibbonV of coloured ribbon graphs of Reshetikhin and Turaev
[RT90, Tur94]. We begin by defining RibbonV for any surface.

Definition 4.2.1. A ribbon graph is constructed out of a finite number of ribbons and coupons:

1. A ribbon is a framed strand. The homeomorphic image of { 0 } is called the bottom base
of the ribbon and the homeomorphic image of { 1 } is called the top base of the ribbon.
Ribbons have two possible directions: up from the bottom base to the top base (+) or
down from the top base to the bottom base (−).

2. A coupon is homeomorphic to [0, 1]2. Its bases are the homeomorphic images of [0, 1]×{ 0 }
and [0, 1]×{ 1 }: the image of [0, 1]×{ 0 } is the bottom base and the image of [0, 1]×{ 1 }
is the top base.

A base of a ribbon may be attached to the base of a coupon, or to the other base of the ribbon
to form an annulus, otherwise ribbons and coupons are disjoint.
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annulus
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top base

bottom base
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direction

bottom
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top 
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direction

Definition 4.2.2. Fix a strict monoidal category V . A ribbon graph is coloured by V as
follows:

1. Each ribbon is coloured with a object of V .

2. For a coupon, let V1, . . . , Vn and ε1, . . . , εn be the colours and directions of the strands
attached to the bottom base the coupon and let W1, . . . ,Wm and η1, . . . , ηm be the colours
and directions of the strands attached to the top base the coupon—the order in which
the bands are attached to base [0, 1] gives the ordering. The coupon is coloured by a
morphism f : V ε11 ⊗ · · · ⊗ V εnn →W η1

1 ⊗ · · · ⊗W ηm
m of V where X+ := X and X− := X∗

for X ∈ V .

Definition 4.2.3. A coloured ribbon diagram of a surface Σ is an embedding of a coloured
ribbon graph into Σ × [0, 1] such that unattached bases of ribbons are sent to Σ × { 0, 1 } and
otherwise the image lies in Σ × (0, 1). The coupons must be oriented upwards. We call its
intersection with Σ×{ 0 } the bottom of the diagram and its intersection with Σ×{ 1 } the top
of the diagram.

Definition 4.2.4. Two coloured strand diagrams are isomorphic if there is a finite sequence
of isotopies from one to the other each of which are fixed except in the interior of a 3–ball and
preserves the attachments of ribbons and directions.

Definition 4.2.5. Fix a strict ribbon category V and a surface Σ. The k–linear category of
V -coloured strands in Σ is denoted RibbonV (Σ).

80



I. The objects of RibbonV (Σ) are finite sets
{
x

(V1,ε1)
1 , . . . , x

(Vn,εn)
n

}
of disjoint framed

points xi in Σ coloured by objects Vi ∈ V and given a direction ε ∈ {+,−}.

II. A morphism F :
{
x

(V1,ε1)
1 , . . . , x

(Vn,εn)
n

}
→
{
y

(W1,δ1)
1 , . . . , y

(Wm,δm)
m

}
of RibbonV (Σ) is

a finite linear combination F =
∑
i λiFi where λi ∈ k and Fi is a V –coloured strand

diagram such that bottom of the diagram is
{
x

(V1,ε1)
1 , . . . , x

(Vn,εn)
n

}
and the top is{

y
(W1,δ1)
1 , . . . , y

(Wm,δm)
m

}
†.

III. The identity morphism Id{
x

(V1,ε1)
1 ,...,x

(Vn,εn)
n

} is the ribbon diagram consisting of n ribbons
which are fixed in Σ–coordinate and framing (up to isomorphism).

IV. The composition of morphisms F =
∑
i λiFi and G =

∑
j µjGj is G◦F =

∑
i,j λiµjGj◦Fi

where Gj ◦ Fi is given by stacking coloured strand diagrams then retracting Σ× [0, 2] to
Σ × [0, 1]. The strands of Fi attached to the top of its diagram and the strands of Gj
attached to the bottom of its diagram are merged.

Remark 4.2.6. Note that an embedding of surfaces p : Σ → Π induces a functor P : Sk(Σ) →
Sk(Π) of skein categories which on the object x is defined by P (x) = p(x) and on the morphism
F =

∑
i λiFi is defined by P (Fi) =

(
p× Id[0,1]

)
(Fi).

Remark 4.2.7. When Σ = C × [0, 1] for some 1-manifold C the k–category RibbonV (Σ) can
be equipped with a monoidal structure induced by the embedding

I : (C × [0, 1]) t (C × [0, 1]) ↪−→ C × [0, 1]

which retracts both copies of C× [0, 1] in the second coordinate and includes them into another
copy of C × [0, 1]. We shall denote the retractions l and r respectively. The monoidal unit is
the set { }.

The monoidal category RibbonV (C × [0, 1]) has duals with the dual of an object obtained
by flipping directions:{

x
(V1,ε1)
1 , . . . , x(Vn,εn)

n

}∗
:=
{
x

(V1,−ε1)
1 , . . . , x(Vn,−εn)

n

}
.

The unit and counit are given by a cap and cup respectively. Equipping RibbonV (C × [0, 1])
with a braiding and twist given by crossing ribbons are twisting ribbons (see figures in Section
2.2) makes it into a ribbon category. In particular RibbonV ([0, 1]2) is a ribbon category.

Proposition 4.2.8 [Tur94]. Let V be a strict ribbon category. There is a full surjective ribbon
functor

eval : RibbonV ([0, 1]2)→ V .

To define a skein category SkV (Σ) of a surface we take the ribbon category of the surface
RibbonV (Σ) and force it to locally satisfy the relations satisfied in V .

Definition 4.2.9. Let Σ be a surface and V be a strict ribbon category. The k–linear category
SkV (Σ) is RibbonV (Σ) modulo the following relation on the morphisms of RibbonV (Σ). For
each orientation preserving embedding

E : [0, 1]3 −→ Σ× [0, 1]
†Note that this includes the colouring, framings and directions matching.
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we set the morphism F =
∑
i λiFi to zero if

1. the only intersection of Fi with the boundary of the cube E(∂[0, 1]3) are transverse ribbons
with the top and bottom edge of the cube;

2. the Fi are equal outside of E([0, 1]3);

3.
∑
i λi eval

(
E−1(Fi ∩ E([0, 1]3)

)
= 0 where eval is the functor from Proposition 4.2.8.

So from Proposition 4.2.8 we conclude

Corollary 4.2.10. Let V be a strict ribbon category. Then there is an equivalence of ribbon
categories

SkV

(
[0, 1]2

)
' V .

Diagrams

The morphisms of a skein category are linear combinations of coloured ribbon diagrams in
Σ × [0, 1] up to isotopy. A ribbon diagram R can be depicted by diagrams drawn on Σ in a
way generalising knot diagrams. Deform the ribbon diagram R so that with the exception of
bands attached to end intervals it lies almost parallel and very close to Σ× { 1/2 }. The bands
attached to end intervals can be deformed so that they do not move in the Σ direction except
very close to Σ× { 1/2 }. Further deform R so that the coupons of R lie in Σ× { 1/2 }, so that
no ribbons lie directly above or below (in the t coordinate) coupons, and at most two ribbons
lie above or below each other. After having deformed R in this manner we draw the projection
of the ribbon diagram onto Σ × { 1/2 } taking account under and over crossings and making
start and end intervals as such. The original ribbon diagram R can be recovered up to isotopy
from this diagram.

The composition of ribbon diagrams R and S in a skein category with the end points of R
equal (in position, framing and colouring) to the start points of S is the ribbon diagram S ◦R
formed by placing S above R in Σ × [0, 2], gluing the end points of R to the start points of S
and deforming Σ× [0, 2] to Σ× [0, 1]. The diagram of S ◦R is given by placing the diagram of
S over the diagram of R and removing the start and end points which now join up.
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4.2.2 Module Structures and the Relative Tensor Product

We saw in the previous section that Sk(C × [0, 1]) is a monoidal category for any 1-manifold
C. Suppose that we have a surface M with boundary ∂M . We shall now show how a suitable
embedding of C into ∂M equips Sk(M) with a Sk(C × [0, 1])–module structure.

Definition 4.2.11. Let C be a 1-manifold and M be a surface with boundary ∂M . A thickened
right embedding of C into the boundary of M consists of

1. An embedding Ξ : C×(−ε, 1] ↪−→M such that its restriction to C×{ 1 } gives an embedding
ξ : C ↪−→ ∂M . We denote the restriction Φ := Ξ|C×[0,1] and the restriction µ := Ξ|C×{ 0 }.

2. An embedding E : M −→M such that Im(E) is disjoint from Im(Φ).

3. An isotopy λ : M × [0, 1]→M from IdM to E which is trivial outside of Im(Ξ).

A thickened left embedding is defined similarly except Ξ is an embedding Ξ : C× [0, 1+ε) ↪−→
M such that its restriction to C × { 0 } gives an embedding ξ : C ↪−→ ∂M .

Remark 4.2.12. Let F,G : M −→ M be two embeddings and let σ : M × [0, 1] → M be an
isotopy from F to G. This isotopy traces out for any m ∈ Sk(M) a ribbon tangle

rσ,m : F (m)→ G(m).

In particular if (Ξ, E, λ) is a thickened embedding of C into the boundary of M then the isotopy
λ : M × [0, 1]→M traces out for any m ∈ Sk(M) a ribbon tangle rλ,m : m→ E(m). We also
have for any a ∈ Sk(C × [0, 1]) ribbon tangles rl,a : a→ a ∗ ∅ and rr,a : a→ ∅ ∗ a where l and
r are the retractions used to define the monoidal structure of Sk(C × [0, 1]. Furthermore, for
any ribbon tangle f : m→ m′ we have that

rλ,m′ ◦ f = E(F ) ◦ rλ,m

and similarly rl,a and rr,a ‘commute’ with any ribbon tangle g : a→ a′.

Definition 4.2.13. Given a thickened right embedding (Ξ, E, λ) of C into the boundary of M ,
Sk(M) is a right Sk(C × [0, 1])–module with action

C : Sk(M)× Sk(C × [0, 1])→ Sk(M)

induced from the embedding of surfaces

M t (C × [0, 1])→M : M tA 7→ E(M) t Φ(A).

The associator β is defined as

βm,a,b := rλ−1,(mC∅)C∅ t
(
rl,∅Ca ◦ rλ−1,(∅Ca)Ca

)
t rr,(∅C∅)Cb : (mC a)C b→ mC (a⊗ b)

and the unitor η is defined as
ηm := r−1

λ,m : mC ∅ → m.

Analogously, a thickened left embedding (Ξ, E, λ) of C into the boundary of N defines a left
Sk(C × [0, 1])–module structure on Sk(N),
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As skein categories are k-linear, we may define the relative tensor product of skein categories
to be their relative tensor product as k-linear categories.

Definition 4.2.14. Let C be a 1–manifold with a thickened right embedding (ΞM , EM , λM )
into the boundary of the surface M and a thickened left embedding (ΞN , EN , λN ) into the
boundary of the surface N . By Definition 4.2.13, Sk(M) is a right Sk(C × [0, 1])–module and
Sk(N) is a left Sk(C × [0, 1])–module. The relative tensor product Sk(M) ×Sk(A) Sk(M) is
the relative tensor product as k-linear categories of Sk(M) and Sk(C) relative to Sk(A) (See
Definition 4.1.7).

Remark 4.2.15. The simplify notation we shall define A := C × [0, 1].

4.2.3 Excision of Skein Categories

Theorem 4.2.16. Let C be a 1–manifold with a thickened right embedding (ΞM , EM , λM ) into
the boundary of the surface M and a thickened left embedding (ΞN , EN , λN ) into the boundary
of the surface N . The thickened embeddings define a k–linear functor

F : Sk(M)×Sk(A) Sk(N) ∼−→ Sk(M tA N)

which gives an equivalence of categories, where Sk(M) ×Sk(A) Sk(N) is the relative tensor
product category defined in the previous section, and (M tA N) is the gluing

M tA N := M tN

/{
ξN (g, i) ∼ ξN (g, 1− i)

∣∣∣∣∣ g ∈⊔
i

γi, i ∈ [0, 1]
}
.
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Before proceeding to the proof of the theorem, we shall define the ribbon tangles ρm,a,b ∈
Sk(M) and ρa,b,n ∈ Sk(N) and prove a couple of identities about them. These will be needed
in the proof that F is full and faithful.

Definition 4.2.17. Let m ∈ Sk(M) and a, b ∈ Sk(A) such that the points in a are disjoint
from the points in b. We define the ribbon tangle ρm,a,b ∈ Sk(M) to be

ρm,a,b := rλM ,mCa t Id∅Cb : mC (a t b)→ (mC a)C b.

Let n ∈ Sk(N). We define the ribbon tangle ρa,b,n ∈ Sk(N) to be

ρa,b,n := rλN ,bBn t IdaB∅ : (a t b)B n→ aB (bB n)).

Lemma 4.2.18. For any m ∈ Sk(M), n ∈ Sk(N) and a, b ∈ Sk(A) such that the points in a

are disjoint from the points in b, we have the identities:

ρm,a,b = β−1
m,a,b ◦ (IdmC(rl,a t rr,b))

ρa,b,n = β−1
a,b,n ◦ ((rl,a t rr,b)B Idn) .

Proof.

β−1
m,a,b ◦ (IdmC(rl,a t rr,b)) :=

(
rλM ,mC∅ t

(
rλM ,∅Ca ◦ rl−1,∅C(a∗∅)

)
t rr−1,∅C(∅∗b)

)
◦ (IdmC(rl,a t rr,b))

= rλM ,mC∅ t
(
rλM ,∅Ca ◦ rl−1,∅C(a∗∅) ◦ rl,∅Ca

)
t
(
rr−1,∅C(∅∗b) ◦ rr,∅Cb

)
= rλM ,mCa t Id∅Cb
= ρa,b,n.

The other identity is analogous.

Lemma 4.2.19. For any m ∈ Sk(M), n ∈ Sk(N) and a, b ∈ Sk(A) such that the points in a

are disjoint from the points in b, the following diagram commutes.

(mC a, bB n)

((mC a)C b, n) (m, aB (bB n))

(mC (a t b), n) (m, (a t b)B n)

ιm,a,bBnιmCa,b,n

ιm,atb,n

(ρm,a,b,Idn) (Idm,ρa,b,n)

We shall refer to this diagram as the pentagon.
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Proof.

(mC a, bB n)

((mC a)C b, n) pentagon of β (m, aB (bB n))

(mC (a ∗ b), n) (m, (a ∗ b)B n)

naturality of ι

(mC (a t b), n) (m, (a t b)B n)

ιm,a,bBnιmCa,b,n

(β−1
m,a,b

,Idn)
ιm,a∗b,n

(Idm,β−1
a,b,n

)

ιm,atb,n

(IdmC(rl,atrr,b),Idn) (Idm,(rl,a,rr,b)BIdn)

Lemma 4.2.20. Let f : m → m′ be a morphism in Sk(M), g : a → a′ be a morphism in
Sk(M) which is disjoint from Idb and h : b → b′ be a morphism in Sk(M) which is disjoint
from Ida. The following diagrams commute:

mC (a t b) m′ C (a t b′)

(mC a)C b (m′ C a)C b′

fC(Ida th)

ρm,a,b ρm′,a,b′

(fCIda)Ch

mC (a t b) m′ C (a′ t b)

(mC a)C b (m′ C a′)C b

fC(gtIdb)

ρm,a,b ρm′,a,b′

(fCg)CIdb

We have a similar result for the ρ in Sk(N). We shall refer to this as the naturality of ρ.

Proof. This follows from the similar naturality of rλM and rλN .

We now proceed to the proof of excision.

Proof of Theorem 4.2.16. We shall first define

F : Sk(M)×Sk(A) Sk(N)→ Sk(M tA N)

and show this definition is well-defined, and then show that F is full, faithful and essentially
surjective.

Definition of F

We began by defining F :

Objects: Let (m,n) be an object of Sk(M)×Sk(A)Sk(N), so m is a finite set of disjoint framed
directed coloured points in M and n is a finite set of disjoint framed directed coloured
points in N . We define

F (m,n) := EM (m) t EN (n)
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which is a finite set of disjoint framed directed coloured points in M tA N , and thus is a
object of Sk(M tA N).

Morphisms: By the definition of the relative tensor product (Definition 4.1.7), the morphisms
of Sk(M)×Sk(A) Sk(N) are generated by the morphisms

1. (f, g) : (m,n)→ (m′, n′), where f ∈ HomSk(M)(m,m′) and g ∈ HomSk(N)(n, n′),

2. ιm,a,n : (mC a, n)→ (m, aB n) for (m, a, n) ∈ Sk(M)× Sk(A)× Sk(N), and

3. ι−1
m,a,n : (m, aB n)→ (mC a, n) for (m, a, n) ∈ Sk(M)× Sk(A)× Sk(N),

so to define F it suffices to define F for these morphisms:

1. F (f, g) := EM (f) t EN (g) ∈ HomSk(MtAN)(EM (m) t EN (n), EM (m′) t EN (n′))
where E is the functor of categories induced by the embedding E.

2. F (ιm,a,n) := r−1
λM ,E2

M
(m)t

(
rλN ,a ◦ r−1

λM ,EM (a)

)
trλN ,E(n) ∈ HomSk(MtAN)(E2

M (m)t
EM (a) t EN (n), EM (m) t EN (a) t E2

N (n))

3. F (ι−1
m,a,n) := rλM ,EM (m)t

(
rλM ,a ◦ r−1

λN ,EN (a)

)
tr−1

λN ,EN (n) ∈ HomSk(MtAN)(EM (m)t
EN (a) t E2

N (n), E2
M (m) t EM (a) t EN (n))

F

 

Figure 4.1: This embedding of surfaces
induces a functor Sk(M) × Sk(N) →
Sk(M tA N) of their skein categories.
The functor F on P (Sk(M)× Sk(N))
is given by this functor: that is on ob-
jects and on morphisms of the form
(f, g).

Figure 4.2: The functor F

on the natural isomorphism ι

gives a ribbon which has stands
which cross the middle section
from F (∅ C a, ∅) to F (∅, a B ∅)
(coloured red). Elsewhere apply-
ing F (ιm,a,n) only moves points
a little.

In order to show that F is well-defined we must show F (morphism) still satisfies the relations
in Definition 4.1.7. This is a sequence of straight forward calculations:

Linearity Follows automatically as we have defined F to be k–linear.
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Functionality Follows from the functionality of the functors EM and EN :

F ((f ′, g′) ◦ (f, g)) = EM (f ′ ◦ f) t EN (g′ ◦ g)

= (EM (f ′) ◦ EM (f)) t (EN (g′) ◦ EN (g))

= F ((f ′ ◦ f, g′ ◦ g))

F (Idm,n) = (EM (Idm), EN (Idn)) = (IdEM (m), IdEN (n)) = IdF (m,n)

Isomorphism Follows directly from the definitions:

F (ιm,a,n) ◦ F (ι−1
m,a,n) :=

(
r−1
λM ,E2

M
(m) t

(
rλN ,a ◦ r−1

λM ,EM (a)

)
t rλN ,E(n)

)
◦
(
rλM ,EM (m) t

(
rλM ,a ◦ r−1

λN ,EN (a)

)
t r−1

λN ,E2
N

(n)

)
= IdEM (m) t IdEN (a) t IdE2

N
(n)

= IdE(m)tE(aBn)

and similarly for F (ι−1
m,a,n) ◦ F (ιm,a,n).

Naturality This follows from Remark 4.2.12:

F (ιm′,a′,n′) ◦ F (f C g, h) =
(
r−1
λM ,E2

M
(m′) t

(
rλN ,a′ ◦ r−1

λM ,EM (a′)

)
t rλN ,EN (n′)

)
◦
(
E2
M (f) t EM (g) t EN (h)

)
=
(
r−1
λM ,E2

M
(m′) ◦ E

2
M (f)

)
t
(
rλN ,a′ ◦ r−1

λM ,EM (a′) ◦ EM (g)
)
t
(
rλN ,E(n′) ◦ E(h)

)
=
(
EM (f) ◦ r−1

λM ,E2
M

(m)

)
t
(
EN (g) ◦ rλN ,a ◦ r−1

λM ,EM (a)

)
t
(
E2(h) ◦ rλN ,E(n)

)
= F (f, g B h) ◦ F (ιm,a,n)

Triangle Follows from the definitions:

F (Idm, ηn) ◦ F (ιm,∅,n) =
(

IdE(m) tr−1
λN ,EN (n)

)
◦
(
r−1
λM ,E2

M
(m) t rλN ,EN (n)

)
= r−1

λM ,E2(m) t IdEN (n)

= F (θmC∅, Idn)

Pentagon As

βa,b,n = rλ−1
N
,∅B(∅Bn) t

(
rr,bB∅ ◦ rλ−1

N
,∅B(bB∅)

)
t rl,aB∅

β−1
m,a,b = rλM ,mC∅ t

(
rλM ,∅Ca ◦ rl−1,∅C(a∗∅)

)
t rr−1,∅C(∅∗b)

we have that

F ((β−1
m,a,b, Idn) = rλM ,E2

M
(m) t

(
rλM ,EM (a) ◦ rl−1,EM (a∗∅)

)
t rr−1,EM (∅∗b) t IdEN (n)

F (Idm, βa,b,n) = IdEM (m) trλ−1
N
,E3
N

(n) t
(
rr,EN (b) ◦ rλ−1

N
,E2
N

(b)

)
t rl,EN (a)

So,

F (Idm, βa,b,n) ◦ F (ιm,a,bBn) ◦ F (ιmCa,b,n) ◦ F (β−1
m,a,b, Idn)
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=
(

IdEM (m) trλ−1
N
,E3
N

(n) t
(
rr,EN (b) ◦ rλ−1

N
,E2
N

(b)

)
t rl,EN (a)

)
◦
(
rλ−1
M
,E2
M

(m) t
(
rλN ,a ◦ rλ−1

M
,EM (a)

)
t rλN ,E(bBn)

)
◦
(
rλ−1
M
,E2
M

(mCa) t
(
rλN ,b ◦ rλ−1

M
,EM (b)

)
t rλN ,E(n)

)
◦
(
rλM ,E2

M
(m) t

(
rλM ,EM (a) ◦ rl−1,EM (a∗∅)

)
t rr−1,EM (∅∗b) t IdEN (n)

)
=
(

IdEM (m) ◦rλ−1
M
,E2
M

(m) ◦ rλ−1
M
,E3
M

(m) ◦ rλM ,E2
M

(m)

)
t
(
rl,EN (a) ◦ rλN ,a ◦ rλ−1

M
,EM (a) ◦ rλ−1

M
,E2
M

(a) ◦ rλM ,EM (a) ◦ rl−1,EM (a∗∅)

)
t
(
rr,EN (b) ◦ rλ−1

N
,E2
N

(b) ◦ rλN ,E(b) ◦ rλN ,b ◦ rλ−1
M
,EM (b) ◦ rr−1,EM (∅∗b)

)
t
(
rλ−1
N
,E3
N

(n) ◦ rλN ,E2(n) ◦ rλN ,E(n) ◦ IdEN (n)

)
=
(
rλ−1
M
,E2
M

(m)

)
t
(
rl,EN (a) ◦ rλN ,a ◦ rλ−1

M
,EM (a) ◦ rl−1,EM (a∗∅)

)
t
(
rr,EN (b) ◦ rλN ,b ◦ rλ−1

M
,EM (b) ◦ rr−1,EM (∅∗b)

)
t
(
rλN ,E(n)

)
=
(
rλ−1
M
,E2
M

(m)

)
t
(
rλN ,a∗∅ ◦ rλ−1

M
,EM (a∗∅)

)
t
(
rλN ,∅∗b ◦ rλ−1

M
,EM (∅∗b)

)
t
(
rλN ,E(n)

)
= F (ιm,a∗b,n)

Remark 4.2.21. These identities have straightforward interpretations topologically, for example
the pentagon identity holds as one can straighten strands.

F is essentially surjective

Any point in EM (M) t EN (N) ⊂ M tA N is in the image of F . If point x(V,ε) is not in this
region then there is a ribbon which translates x(V,ε) across the middle region to a point x̃(V,ε)

which is in this region. Hence, every point in M tA N is isomorphic to an point in the image
of F , and F is essentially surjective.

F is full

Let (m1, n1), (m2, n2) be any objects in Sk(M)×Sk(A) Sk(N) and let

[u] ∈ HomSk(MtAN) (F (m1, n1), F (m2, n2)) ,

so [u] is the equivalence class of a ribbon diagram

u : EM (m1) t EN (n1)→ EM (m2) t EN (n2).

In order to show F is full, we must show there is a morphism

w ∈ HomSk(M)×Sk(A)Sk(N)) ((m1, n1), (m2, n2))

such that F (w) = u for some u equivalent to u.
We shall call Im(ΞM ∪ΞN )×[0, 1], the middle region. Up to isotopy fixed outside this middle

region, we may assume that u intersects Im(µM )× [0, 1] in a finite number of transverse strands.
Let ti ∈ [0, 1] be the levels when uti intersects Im(µM ). By an isotopy in the t–coordinate which
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moves coupons, twists, minima, maxima, and strands not lying in F (M,N)†, we may assume
that uti consists entirely of framed points in F (M,N). Up to isotopy fixed in the middle
region, we can further assume uti contains framed points entirely in F (M C A,A B N). This
means that uti =

(
mC

(
a t b

)
, (c t d)B n

)
where only b and c intersect Im(µM ) t Im(µN ).

We reparametrise further so that for some small εi > 0, u[ti−εi,ti+ε] = IdmCa,dBn tv[ti−εi,ti+ε]

where v[t−ε,t+ε] : EM (b) t EN (c) → EM (b′) t EN (c′): in other words u[ti−εi,ti+ε] consists of
identity strands and a ribbon tangle which straddles the middle region.

Figure 4.3: An example of
u[ti−εi,ti+ε]. In general a, b, b′, . . .
are not single framed points, but
finite sets of framed points, and
the coupon depicted could be any
ribbon diagram in this square
with the same inputs and out-
puts.

We now have a ribbon diagram u equivalent to u with a decomposition

u = u[1,tN+εN ] ◦ u[tN−εN ,tN+εN ] ◦ utN−1+εN−1,tN−εN ◦ · · · ◦ u[t1−ε1,t1+ε1]◦u[0,t1−ε1]

such that u[ti−εi,ti+εi] = IdmiCai,diBni tv[ti−εi,ti+εi] and the other morphisms in the decompo-
sition lie in F (M,N)× [0, 1]. If a morphism lies in F (M,N)× [0, 1] then it is of the form f t g
for f ∈ F (M) × [0, 1] and g ∈ F (N) × [0, 1]. In which case F (E−1

M (f), E−1
N (g)) = (f, g). So it

remains to consider the ribbon tangle

u[t−ε,t+ε] = v[t−ε,t+ε]tIdE2
M

(m)tEM (a)tEN (d)tE2
N

(n) : F (mC(atb), (ctd)Bn)→ F (mC(atb′), (c′td)Bn)

where v[t−ε,t+ε] : EM (b) t EN (c) → EM (b′) t EN (c). As the middle region is topologically
trivial, there exists a ribbon tangle v : bB c→ b′ B c′ in Sk(M) such that

v[t−ε,t+ε] =
((
rλM ,b′ ◦ r−1

λN ,EN (b′)

)
t rλN ,EN (c′)

)
◦ EN (v) ◦

((
rλN ,b ◦ r−1

λM ,EM (b)

)
t rλ−1

N
,E2
N

(c)

)
.

–

†Being able to do this relies on the ribbon diagram u not starting or ending in the middle region.
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Figure 4.4: The top figure is an example of v[t−ε,t+ε].
The bottom figure is isotopic and depicts the decom-
position of v[t−ε,t+ε]:

1. The yellow ribbons are((
rλN ,b ◦ r−1

λM ,EM (b)

)
t rλ−1

N
,E2
N

(c)

)
;

2. The distorted copy of v[t−ε,t+ε] is v;

3. The blue ribbons are((
rλM ,b′ ◦ r−1

λN ,EN (b′)

)
t rλN ,EN (c′)

)
.

We denote by w[t−ε,t+ε] the following morphism in Sk(M)×Sk(A) Sk(N):

(mC (a t b), (c t d)B n)

((mC a)C b, (c t d)B n)

(mC a, bB ((c t d)B n))

(mC a, b′ B ((c′ t d)B n))

((mC a)B b′, (c′ t d)B n)

(mC (a t b′), (c′ t d)B n)

(ρm,a,b,Id)

ιmCa,b,(ctd)Bn

(IdmCa,vtId∅B(dBn))

ι−1
mCa,b′,(c′td)Bn

(ρ−1
m,a,b′

,Id)

We shall sometimes denote v̂ := v t Id∅B(dBn). We claim that F (w[t−ε,t+ε]) = v[t−ε,t+ε]. By the
functorality of F and the definition of F on the various components, we have that F (w[t−ε,t+ε])
is

F (mC (a t b), (c t d)B n)

F ((mC a)C b, (c t d)B n)

F (mC a, bB ((c t d)B n))

F (mC a, b′ B ((c′ t d)B n))

F ((mC a)B b′, (c′ t d)B n)

F (mC (a t b′), (c′ t d)B n)

rλM,EM (mCa)tIdEM (b) t IdEN (c) t IdEN (dBn)

r
λ
−1
M

,EM (mCa)
t
(
rλN,b◦r

−1
λM,EM (b)

)
trλN,EN (c)trλN,EN (dBn)

(
IdEM (mCa),EN (v)tIdE2

N
(dBn)

)
rλM,EM (mCa)t

(
rλM,b′◦rλ−1

N
,EN (b′)

)
tr−1
λN,EN (c′)tr

−1
λN,EN (dBn)

r
λ
−1
M

,E2
M

(mCa)
tIdEM (b) t IdEN (c′) t IdEN (dBn)
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So it decomposes into three components:

F (w[t−ε,t+ε]) = IdEM (mCa) t IdEN (dBn)

t
((
rλM ,b′ ◦ r−1

λN ,EN (b′)

)
t rλN ,EN (c′)

)
◦ EN (v) ◦

((
rλN ,b ◦ r−1

λM ,EM (b)

)
t rλ−1

N
,E2
N

(c′)

)
= IdEM (mCa) t IdEN (dBn) tv

= u[t−ε,t+ε].

and we are done.

F is faithful

In the previous section we have shown that for any ribbon tangle u there is a morphism w such
that F (w) = u. We shall now show that this defines a well defined inverse map of

F(m1,n1),(m2,n2) : HomSk(M)×Sk(A)Sk(N) ((m1, n1), (m2, n2))→ HomSk(MtAN) (F (m1, n1), F (m2, n2)) .

If the map u 7→ w is well defined it is the inverse of F(m1,n1),(m2,n2), because F (f, g) 7→ (f, g)
and F (ιm,a,n) 7→ ιm,a,n.

Any equivalence of ribbon diagrams in Sk(M tA N) can be decomposed into equivalences
which are fixed outside of one open set in the open cover of (M tA N) × [0, 1]. In particular
this means that any isotopy of

u = u[1,tN+εN ] ◦ u[tN−εN ,tN+εN ] ◦ u[tN−1+εN−1,tN−εN ] ◦ · · · ◦ u[t1−ε1,t1+ε1]◦u[0,t1−ε1]

consists of the composition of equivalence of the following forms:

1. Equivalence of a non-crossing morphism. Let ui := u[t+ε,t−ε] be a non-crossing
ribbon diagram, so ui = ftg for f ∈ F (M)×[0, 1] and g ∈ F (N)×[0, 1]. The equivalences
f ∼ f ′ and g ∼ g′ of the ribbon tangles in F (M) × [0, 1] and F (N) × [0, 1] respectively
define an equivalence of ui to another non-crossing ribbon diagram u′i := f ′ t g′.

2. Equivalence in the middle region.

Let ui := u[t−ε,t+ε] be a crossing ribbon diagram,
so ui = v1 t IdF (mCa,dBn). The equivalence in
the middle region v1 ∼ (r t s) ◦ v2 ◦ (p t q) where
r, p ∈ F (∅ C A) × [0, 1] and s, q ∈ F (A B ∅) × [0, 1]
depicted in the figure opposite defines an equivalence
of ui to

(
r t s t IdF (mCa,dBn)

)
◦
(
v2 t IdF (mCa,dBn)

)
◦
(
p t q t IdF (mCa,dBn)

)
.

3. Commuting with a crossing. Let ui := u[s,t−ε]
† be a non-crossing ribbon diagram

of the form ui = g t h t IdF (b,c) where g ∈ F (M) × [0, 1] and h ∈ F (N) × [0, 1] and let
†We use s as this ui may only be part of one of the ribbon diagrams in the decomposition of u.
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ui+1 := u[t−ε,t+ε] be a crossing ribbon such that v : btc→ b′tc′. There is an equivalence:

(
v t IdF (mCx,yBn)

)
◦
(
g t h t IdF (b,c)

)
∼
(
g t h t IdF (b′,c′)

)
◦
(
v t IdF (mCa,bBn)

)
which commutes these ribbon diagrams up to some modification of the identity compo-
nents.

Merging crossings. Let ui and ui+1 both be crossing ribbon diagrams†, so ui = f t
IdF (mCa,dBn) and ui+1 = g t IdnCb′′,c′′Bm for f : bt c→ b′ t c′ and g : xt y → x′ t y′ for
x = at(b′−b′′)∗ and y = dt(c′−c′′), see the figure below. Then the composition ui+1◦ui
is equivalent to the single crossing u′ := vtIdF (m,n) where v = (g t Idb′′tc′′)◦(f t Idatd).

We shall now check that the map u 7→ w is well defined by showing it is invariant under the
equivalences listed above.

Equivalence of a non-crossing morphism This is straightforward: ui := ftg 7→
(
E−1
M (f), E−1

N (g)
)

and u′i := f ′ t g′ 7→
(
E−1
M (f ′), E−1

N (g′)
)
, but f ∼ f ′ and g ∼ g′ implies E−1

M (f) ∼ E−1
M (f ′) and

E−1
N (g) ∼ E−1

N (g′), so these ribbon tangles map to the same morphism.

†To simplify the proof slightly, we assume that there are no points in the left crossing region which are not
moved by the crossing.
∗(b′ − b′′) denotes set difference
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Equivalence of middle region

(mC (a t b), (c t d)B n) (mC (a t x), (y t d)B n)

naturality of ρ

((mC a)C b, (c t d)B n) ((mC a)C x, (y t d)B n)

naturality of ι

(mC a, bB ((c t d)B n)) (mC a, xB ((y t d)B n))

definition of maps

(mC a, b′ B ((c′ t d)B n)) (mC a, x′ B ((y′ t d)B n))

naturality of ι

((mC a)C b′, (c′ t d)B n) ((mC a)C x′, (y′ t d)B n)

naturality of ρ

(mC (a t b′), (c′ t d)B n) (mC (a t x′), (y′ t d)B n)

(ρm,a,b,Id)

(IdmC(Ida tp),(qtIdd)BIdn)

(ρm,a,x,Id)

ιmCa,b,(ctd)Bn

(IdmCaCp),(qtIdd)BIdn)

ιmCa,x,(ytd)Bn

(Id,û1)

(Id,pB((qtIdd)BIdn))

(Id,û2)

ι−1
mCa,b′,(c′td)Bn

(IdmCa,rB((stIdd)BIdn))

ι−1
mCa,x′,(y′td)Bn

(ρ−1
m,a,b′

,Id)

(IdmCaCr,(stIdd)BIdn)

(ρ−1
m,a,x′

,Id)

(IdmC(Ida tr),(stIdd)BIdn)
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Crossings commute with disjoint morphisms

(mC (a t b), (c t d)B n)) (mC (x t b), (c t y)B n))

naturality of ρ

((mC a)C b, (c t d)B n)) ((mC x)C b, (c t y)B n))

naturality of ι

(mC a, bB ((c t d)B n)) (mC x, bB ((c t y)B n))

identity morphisms are central

(mC a, b′ B ((c′ t d)B n)) (mC x, b′ B ((c′ t y)B n))

naturality of ι

((mC a)C b′, (c′ t d)B n) ((mC x)C b′, (c′ t y)B n)

naturality of ρ

(mC (a t b′), (c′ t d)B n) (mC (x t b′), (c′ t y)B n)

(gtId∅Cb,(IdcB∅ th))

(ρm,a,b,Id) (ρm,x,b,Id)

(gCIdb,IdcB∅ th)

ιmCa,b,(ctd)Bn ιmCx,b,(cty)Bn

(g,IdbB(IdcB∅ th))

(Id,vtId∅B(dBn)) (Id,vtId∅B(yBn))

(g,Idb′ B(Idc′B∅ th))

ι−1
mCa,b′,(c′td)Bn ι−1

mCx,b′,(c′ty)Bn

(gCIdb′ ,Idc′B∅ th)

(ρ−1
m,a,b′

,Id) (ρ−1
m,x,b′

,Id)

(gtId∅Cb′ ,(Idc′B∅ th))
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Merging Crossings

(mC (a t b), (c t d t e)B n) (m, (a t b)B ((c t d t e)B n))

((mC a)C b, (c t d t e)B n) pentagon (m, aB (bB ((c t d t e)B n)))

(mC a, bB ((c t d t e)B n))

(mC a, b′ B ((c′ t d t e)B n))

((mC a)C b′, (c′ t d t e)B n) pentagon (m, aB (b′ B ((c′ t d t e)B n)))

(mC (a t b′)), (c′ t d t e)B n) (m, (a t b′)B (c′ t d t e)B n)

=

(mC (b′′ t x)), (y t c′′ t e)B n) (m, (b′′ t x)B (y t c′′ t e)B n)

((mC b′′)C x, (y t c′′ t e)B n) pentagon (m, b′′ B (xB (y t c′′ t e)B n))

(mC b′′, xB ((y t c′′ t e)B n))

(mC b′′, x′ B ((y′ t c′′ t e)B n))

((mC b′′)C x′, (y′ t c′′ t e)B n) pentagon (m, b′′ B (x′ B ((y′ t c′′ t e)B n)))

(mC (b′′ t x′), (y′ t c′′ t e)B n) (m, (b′′ t x′)B ((y′ t c′′ t e)B n))

ιm,atb,(ctdtetf)Bn

(ρm,a,b,Id) (Id,ρa,b,(ctdte)Bn)

ιmCa,b,(ctdte)Bn ι−1
m,a,bB((ctdte)Bn)

(Idm,IdaBf̂)(IdmC Ida,f̂) ι naturality

ι−1
mCa,b′,(c′tdte)Bn ιm,a,b′B((c′tdte)Bn)

(ρ−1
m,a,b′

,Id) (Id,ρ−1
a,b′,(c′tdte)Bn)

ιm,atb′,(c′tdte)Bn

ιm,b′′tx,(ytc′′te)Bn

(ρm,b′′,x,Id) (Id,ρb′′,x,(ytc′′te)Bn)

ιmCb′′,x,(ytc′′te)Bn ι−1
m,b′′,(ytc′′te)Bn

(Idm,Idb′′ Bĝ)(IdmC Idb′′ ,ĝ) ι naturality

ι−1
mCb′′,x′,(y′tc′′te)Bn ιm,b′′,x′B((y′tc′′te)Bn)

(ρ−1
m,b′′,x′

,Id) (Id,ρ−1
b′′,x′,(y′tc′′te)Bn)

ι−1
m,b′′tx′,(y′tc′′te)Bn

The composition of the morphism on the right of the diagram is ui+1 ◦ ui, so

ui+1 ◦ ui = ι−1
m,b′′tx′,(y′tc′′te)Bn

◦ (Id, ρ−1
b′′,x′,(y′tc′′te)Bn) ◦ (Idm, Idb′′ Bĝ) ◦ (Id, ρb′′,x,(ytc′′te)Bn)

◦ (Id, ρ−1
a,b′,(c′tdte)Bn) ◦ (IdmC Ida, f̂) ◦ (Id, ρa,b,(ctdte)Bn)
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◦ ιm,atb,(ctdtetf)Bn

= ι−1
m,b′′tx′,(y′tc′′te)Bn

◦ (Id, Idb′′B∅ tĝ) ◦ (Id, ρ−1
b′′,x,(ytc′′te)Bn) ◦ (Id, ρb′′,x,(ytc′′te)Bn)

◦ (Id, IdaB∅ tf̂) ◦ (Id, ρ−1
a,b,(ctdte)Bn) ◦ (Id, ρa,b,(ctdte)Bn)

◦ ιm,atb,(ctdtetf)Bn

by naturality of ρ

= ι−1
m,b′′tx′,(y′tc′′te)Bn ◦ (Id, Idb′′B∅ tĝ) ◦ (Id, IdaB∅ tf̂) ◦ ιm,atb,(ctdtetf)Bn

= u′

as required.

4.3 Relation to Factorisation Homology

4.3.1 Skein Categories and k–linear Factorisation Homologies

Fix a k–linear strict ribbon category V . We shall now use the results proven so far in this
chapter to conclude that the skein category SkV (Σ) is the k–linear factorisation homology∫

Σ V .

I. As V is a braided monoidal category it defines an E2–algebra.

II. We saw in Remark 4.2.6 that an embedding of surfaces Σ ↪−→ Π induces a functor Sk(Σ)→
Sk(Π) between their skein categories, and in Remark 4.2.12 that isotopies of embeddings
define natural transformations. This implies that

SkV ( ) : Mfld2
fr → Catk

is a 2–functor.

III. From Corollary 4.2.10 we have an equivalence of categories SkV (D2) ' V .

IV. From Remark 4.2.7 we have for any 1–manifold C that Sk(C × [0, 1]) has a canonical
monoidal structure induced from the inclusions of intervals.

V. From Theorem 4.2.16 we have given suitable thickened embeddings an equivalence of
categories

SkV (M tA N) ' SkV (M)×SkV (A) SkV (N).

As a factorisation homology is fully characterised by the above (Theorem 2.3.13), we con-
clude:

Theorem 4.3.1. Let V be k–linear strict ribbon category V . The functor

SkV ( ) : Mfld2
fr → Catk

is the k–linear factorisation homology∫
V : Mfld2

fr → Catk
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of surfaces with coefficients in V .

4.3.2 Skein Categories and Presentable Factorisation Homologies

Finally, we shall use the relation between Pr and Catk to show that one can freely cocomplete
a skein category to recover a presentable factorisation homology. Before we do this we must
introduce one more category Ico, the (2, 1)–category of idempotent complete categories.

Idempotent Complete Categories

Definition 4.3.2. A morphism e : x→ x is an idempotent if e ◦ e = e.

Definition 4.3.3. A retract of the object x ∈ C is an object y ∈ C and morphisms

y x
i

r

such that r ◦ i = Idy. Note that r ◦ i is an idempotent.

Definition 4.3.4. An idempotent e : x → x splits if there is a retract y x
i

r
such that

r◦ i = e. A category C is idempotent complete or Cauchy complete if all idempotents in C split.

As any functor preserves idempotents and their splittings, we make the following definition:

Definition 4.3.5. The category of idempotent complete k–linear categories Ico is the (2, 1)–
category whose

1. objects are small idempotent complete categories;

2. 1–morphisms are k–linear functors;

3. 2–morphisms are k–linear natural isomorphisms.

Idempotent complete categories may also be characterised in terms of absolute colimits.

Definition 4.3.6. A weighted colimit ColimG(F ) is an absolute colimit if it is preserved by all
functors.

The idempotent e : x→ x splits if and only if the equaliser Ker(e, Idx) and the coequaliser
Coker(Idx, e) exist. In which case i = Ker(e, Idx) and r = Coker(Idx, e) and they are absolute
colimits. Hence,

Proposition 4.3.7 [Bor94a]. Let C be a small category. The following conditions are equiva-
lent:

1. C is idempotent complete;

2. C has all absolute colimits.

Definition 4.3.8 [BD86]. Let C be a small V -enriched category. The idempotent completion or
Cauchy completion of C is the full subcategory of the V –enriched presheaf category PShV (C )
consisting of absolute colimits of representable functors. It is denoted Ico(C ).

Remark 4.3.9. If C is small then so is Ico(C ), and Ico(C ) ' C if and only if C is idempotent
complete.
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Relations between Catk, Ico and Pr

We now recall a few results which relate categories in Catk, Ico and Pr.

Proposition 4.3.10 [Bor94b]. Idempotent completion defines a functor of k–linear monoidal
categories

Ico : Catk → Ico

Definition 4.3.11. Let C be a small category. The free cocompletion Free(C ) is given by the
Yoneda embedding Y : C → PSh(C )†.

Proposition 4.3.12 [AR94]. The free cocompletion Free(C ) of a small k–linear category is
locally finitely presentable.

Proposition 4.3.13 [KS06]. The free cocompletion of categories defines a bicolimit preserving
functor of k–linear monoidal categories

Free : Catk → Pr.

Definition 4.3.14. An object c ∈ C of a category C is compact-projective if the corepresentable
functor C (c, ) : C → V preserves all small colimits.

Proposition 4.3.15 [BD86]. There is a functor of k–linear monoidal categories

Comp : Pr→ Ico

which sends C to its full subcategory Comp(C ) of compact-projective objects.

Proposition 4.3.16 [BD86]. The functors Free and Comp satisfy the relations that for any
C ∈ Catk:

Comp(Free(C )) ' Ico(C )

and for any D ∈ Pr:
Free(Comp(D)) ' D .

Conclusion

Using the results just stated and that SkV (Σ) =
∫Catk

Σ V we conclude:

Theorem 4.3.17. There are equivalences of categories

Free(Sk(V )) '
∫ Pr

S

Free(V ) and Comp
(∫ Pr

S

Free(V )
)
' Ico(Sk((V )),

so in particular∗

Free(Sk(Repfd
q (G))) '

∫ Pr

S

Repq(G) and Comp
(∫ Pr

S

Repq(G)
)
' Ico(Sk(Repfd

q (G))).

†Technically the free cocompletion is defined in terms of a universal property and then shown in this case
to be given by the Yoneda embedding, see [AR94] for details.
∗Note that as Ico commutes with finite bicolimits, so if we define Sk(V ) := Ico(Sk(V )) then we still have

excision: Sk(M)×Sk(A) Sk(N) ' Sk(M tA N).
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